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One novel pentacyclic depsidone containing an oxetane unit, phomopsidone A (1), together
with the reported excelsione (also named as phomopsidone) (2), and four known
isobenzofuranones (3–6) were isolated from the mangrove endophytic fungus Phomopsis sp.
A123. Their structures were elucidated by 1D and 2D NMR spectroscopic analysis and high
resolution mass spectrometry. The bioactivity assays showed that these compounds possess
cytotoxic, antioxidant, and antifungal activities.
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1. Introduction

A great number of compounds with novel structures
and diverse bioactivities have been isolated and identified
from marine-derived endophytic fungi in the past decades
[1,2]. During our ongoing search for chemical constituents
produced by mangrove endophytic fungi, a novel pentacyclic
depsidone, phomopsidone A (1), together with the known
depsidone compound excelsione (2) [3] (i.e. phomopsidone
[4]), and four known isobenzofuranones including 7-methoxy-
6-methyl-3-oxo-1,3-dihydroisobenzofuran-4-carboxylic acid
(3) [5], diaporthelactone (4) [6], 7-hydroxy-4,6-dimethy-3H-
isobenzofuran-1-one (5) [7], and 7-methoxy-4,6-dimethyl-
3H-isobenzofuran-1-one (6) [8] were obtained from the
metabolites of themangrove endophytic fungal strain Phomopsis
sp. A123.
8.
Phomopsis sp. A123 was isolated from the foliage of
mangrove plant Kandelia candel (L.) Druce in 2003, which
was previously known as the producer of cytotoxic
deacetylmycoepoxydiene and mycoepoxydiene [9,10]. Herein,
we report the isolation and structural elucidation of
phomopsidoneA (1). The cytotoxic activity, radical-scavenging
activity against 2,2-diphenyl-1-picrylhydrazinyl (DPPH), and
antimicrobial activity of compounds 1–6were also described.

2. Experimental

2.1. General procedures

UV spectra were recorded by UNICO single-beam 210A
spectral photometer. The IR spectra were measured in KBr on
a Nicolet FT-IR 360. NMR spectra were taken by a Bruker
Avance III-600 NMR spectrometer with TMS as an internal
standard, δ in ppm relative to Me4Si, and J in Hz. HRESI-MS
data were acquired using BioTOFTM-Q mass spectrometer
(Bruker). Column chromatography was performed with silica
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gel (200–300 mesh, Qingdao Marine Chemical, Inc., Qingdao,
China), silica gel GF254 (Merck), Sephadex LH-20 (40–70 μm,
Amersham Pharmacia Biotech AB, Uppsala, Sweden) and
reversed-phase RP-18 (40–63 μm, Merck, Darmstadt, Ger-
many). Thin layer chromatography (TLC) was carried out on
pre-coated silica gel GF254 plates (0.20–0.25 mm, Qingdao,
China).

2.2. Fungal material

The fungal strain Phomopsis sp. A123 was isolated from
the foliage of the plant, K. candel (L.) Druce, which was
collected from the mangrove nature conservation area of
Fugong, Fujian, China. It was identified as a non-sporulating
fungus by traditional morphology. By sequencing the ITS
rDNA and comparing it to the sequence database in GenBank,
A123 was assigned as a Phomopsis species, being closely
related to Phomopsis liquidambari (Accession No. AY 601919),
with a 98% identity [9,10].

2.3. Culture conditions and extraction

Phomopsis sp. A123 was cultured at 28 °C with 10 L of
PDA medium (20% stored seawater) for 14 d. The agar
cultures were diced and extracted with EtOAc/MeOH/AcOH
(80/15/5, V/V/V). The crude extract was partitioned between
EtOAc and H2O. The organic solution was collected by
filtration, and evaporated giving rise to crude extract, which
was further partitioned with an equal volume of EtOAc and
H2O. The organic phase was dried over Na2SO4 (anh.) and
concentrated in vacuo to yield 11.6 g extract (dark oil). This
extract was purified by repeated column chromatography
(RP-18, Sephadex LH-20, and silica gel) to afford one new
and five known compounds, whose structures were eluci-
dated by HRESI-MS, 1D and 2D NMR.

2.4. Fractionation and isolation

The crude extract (11.6 g) was subjected to silica gel
column (100 g), eluted with a gradient of CHCl3-acetone to
yield 9 fractions: Fra.1–9. Fra.1 (0.7 g) was further subjected
to silica gel column (10 g), eluted with a gradient of
petroleum ether-EtOAc to yield Fra.1-1, Fra.1-2 and Fra. 1-3.
Fra.1-1 (65.3 mg) was chromatographed on Sephadex LH-20
(140 g) and eluted with MeOH to give three compounds:
compound 3 (5.3 mg), compound 4 (13.4 mg) and com-
pound 5 (3.9 mg); Fra.1-2 (22.8 mg) was subjected to silica
gel column (1 g) using petroleum ether-EtOAc to yield
compound 1 (4.8 mg) and compound 2 (5.7 mg); Fra.1-3
(5.1 mg) was chromatographed on Sephadex LH-20 (10 g)
and eluted with MeOH to provide compound 6 (3.0 mg).

Phomopsidone A (1):
White powder, m. p. 198 °C;IR (KBr): v max = 3430,

1766, 1610, 1495, 1257, 1149, 1018, 880, and 720 cm−1;
UV (MeOH) λmax (logεmax) = 330 nm. HRESI-MS:m/z =
341.0630 (calc. 341.0656 for [C18H12O7 + H]+).

2.5. Cell culture and cytotoxicity study

Human tumor cell lines Raji and MDA-MB-435 were
donated by the Anticancer Center, Xiamen University and
cultured in a RPMI-1640 medium supplemented with 10%
heat-inactivated fetal bovine serum, 100 μg mL−1 penicillin,
80 μg mL−1 kanamycin and 100 μg mL−1 streptomycin.
Cultures were maintained in a humidified incubator at
37 °C under an atmosphere of 5% CO2. The cytotoxic activity
of purified compounds was determined following the MTT
assay developed by Mosmann et al. [11]. The optical density
(OD) of the samples was measured with a microplate reader
(M-3350, Bio-Rad) at 595 nm with OD655 nm as a reference.
Growth inhibition rate was calculated with the following
equation:

Inhibitionrate ¼ ODcontrolwell−ODtreatedwellð Þ=
ODcontrolwell−ODblankwellð Þ � 100%

IC50 is defined as the needed concentration of a com-
pound that results in at least 50% inhibition of growth.

2.6. Antioxidant assay

Quantitative measurement of radical scavenging proper-
ties was carried out by following the previous protocol [12]
with slight modifications. The 20 mL reaction mixture
contains 10 mL of 10 mM testing compound (or 80% MeOH
as a blank) and 10 mL of 1 mM solution of DPPH in MeOH. As
a positive control, 10 mL of 10 mM ascorbic acid was used
instead of the sample compound. Decoloration was measured
at 517 nm after incubation at 25 °C for 20 min. All measure-
ments were performed in triplicate. The actual decrease in
absorption induced by the tested compounds was compared
to that of the positive control. The IC50 value calculated
denotes the concentration (mg mL−1 in 80% MeOH) of the
sample required to scavenge 50% of DPPH radicals.

2.7. Detection of antimicrobial activities

The antimicrobial activity was determined by measuring
the minimal inhibitory concentration (MIC). Approximate
105 mL−1 cells or conidia suspension of the selected bacteria
or fungi was inoculated into LB or PD liquid medium in each
well of a 96-well microtiter plate, respectively. Each com-
pound was dissolved in methanol at the concentration of
1 mg mL−1, followed by two-fold serial dilutions on 96-well
plates. Methanol was used as a negative control. Kanamycin
and amphotericin B served as antibacterial and antifungal
positive control, respectively. Bacillus subtilis CMCC(B)63501,
Staphylococcus aureus CMCC(B)26003, Escherichia coli CMCC
(B)44103, Aspergillus nigerACCC30005, and Candida albicans
AS2.538 were used as indicator strains. Microbial growth was
evaluated after incubation at 37 °C for bacteria (24 h) and at
28 °C for fungi (48 h).

3. Results

3.1. Structure elucidation

Compound 1was isolated as white powder. The molecular
formula was determined to be C18H12O7 by HRESI-MS based
on the protonatedmolecular ion ([M + H]+) atm/z 341.0630
(calc. 341.0656 for [C18H12O7 + H]+), indicating twelve



Table 1
1H-NMR (600 MHz) and 13C-NMR (150 MHz) data for Compound 1 in [D6]
Pyridine (TMS, δ values).

Compound 1

No. δH (mult., J in Hz) δC HMBC

1 170.5 (s)
2 111.9 (s)
3 146.8 (s)
4 141.6 (s)
6 164.5 (s)
7 118.7 (s)
8 163.5 (s)
9 6.91 (s,1H) 117.9 (d) 7, 7a, 8 10a, 11
10 145.5 (s)
11 113.4 (s)
12 163.0 (s)
14 150.5 (s)
15 114.7 (s)
16 145.5 (s)
17 5.03 (s, 2H) 69.2 (t) 1, 2, 4, 14, 15, 16
7a 5.48 (s, 2H) 55.2 (t) 6, 7, 8
10a 2.57 (s, 3H) 22.8 (q) 6, 9, 10, 11
15a 2.01 (s, 3H) 12.1 (q) 14, 15, 16
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degrees° of unsaturation. The detailed analysis of 1H and 13C
NMR spectra clearly indicated the presence of a
penta-substituted phenyl moiety. DEPT analysis indicated
that compound 1 contains two methyl groups (δC 22.8, q; and
12.1, q). The down field chemical shift of C-8 (δC 163.5, s),
together with the HMBC correlations from H-9 to C-7, C-7a,
C-8, C-10a and C-11; and from H-7a to C-6, C-7 and C-8,
depicted the penta-substituted benzene ring as the ring A of
this molecule (Fig. 1). The HMBC correlations from H-10a (δC
22.8, q) to C-6, C-9, C-10, and C-11 confirmed the position of
one benzyl group (ring A). The HMBC correlations between
H-7a and C-6, C-7 and C-8 positioned one oxygenated
methylene group (δC 55.2, t). Six more quaternary carbons
(δC 145.5, s; 114.7, s; 150.5, s; 141.6, s; 146.8, s; and 111.9, s)
were observed on the DEPT spectrum, which were attributed
to a second phenyl ring B (Table 1). The HMBC correlations
from H-15a to C-14, C-15 and C-16 provided the clue for this
methyl (δC 12.1, q) substitution on the phenyl ring B, while
the correlations from H-17 to C-1, C-2, C-4, C-14, C-15, and
C-16 indicated the existence of a \CH2\O\CO\ group.

Interestingly, in the HMBC spectrum of compound 1, a
remarkable number of nJCH couplings (n N 3) were observed
(Table 1; Fig. 2). It is well-known that nJCH correlations for
n N 3 are normally very weak or non-observable [13] because
the H–H coupling would cause significant attenuation on C–H
correlation intensities. The observation of longer range nJCH
couplings could be possible for compounds with either no or
few H–H couplings. As compound 1 has no H–H couplings,
the observation of longer range nJCH coupling becomes
reasonable. Similar to this study, long-range couplings have
also been reported in compound 2 [3], corynesidones [14],
mollocellins [15], and others.

No further HMBC information was available for determina-
tion of the connection pattern between ring A and ring B.
However, the 1D and 2D NMR spectra of 1 were found to be
highly similar to those of compound 2, except the chemical
shift of proton 7a at δH4.77 in 2 (Table S1) dramatically shifted
to δH5.48 in 1, while compound 2 was identified as excelsione
Fig. 1. Structure of co
by an X-ray crystal structure [3] (i.e. phomopsidone [4]). Mass
spectrometric analysis revealed that the molecular weight
difference is 18 amu between compounds 1 and 2, suggesting
that compound 1 might be a dehydrated product of 2. Taking
the differences of chemical shifts and molecular weights into
consideration, an ether group in 1 should be formed via a
dehydrolytic condensation between the two hydroxy groups
tethered to C-8 and C-7a in 2. Collectively, the structure of
compound 1was determined to be a new depsidone derivative
and named as phomopsidone A (Fig. 1).

Compound 3 was obtained as white powder. Its molecular
formula was assigned to be C11H10O5 by HRESI-MS ([M + H]+:
obs. 223.0595, calc. 223.0606). The structure of 3 was identified
to be 7-methoxy-6-methyl-3-oxo-1,3-dihydroisobenzofuran-
4-carboxylic acid, which was previously synthesized by
condensation of 3-hydroxy-4-methylbenzoic acid with aqueous
mpounds 1–6.



Fig. 2. Key HMBC 2J and 3J correlations (solid arrows) and 4J correlations
(dashed arrows).
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formaldehyde andhydrochloric acid in early 1950s [5]. However,
this is the first time that compound 3 was reported as a natural
product.

3.2. Bioactivity assay

In MTT assay [11], compound 1 gave an IC50 of 63 μM
against MDA-MB-435 cell line, while other compounds
showed weaker inhibition with IC50 values higher than
150 μM. Compounds 4, 5 and 6 also displayed cytotoxic
activities against Raji cell line with IC50 values of 27 μM,
47 μM and 18 μM, respectively, while 2 showed lower
cytotoxicity with an IC50 of 160 μM.

Compounds 1–6 also showed weak antioxidant activity as
scavengers of DPPH radicals [12] (data not shown). In
addition, compounds 4 and 5 displayed antifungal bioactivity
against A. niger with MIC values of 243 μM and 485 μM,
respectively. Compound 6 inhibited the growth of Alternaria
alternaria with an MIC value of 500 μM. However, all these
compounds did not display antibacterial activities against the
tested strains including B. subtilis, S. aureus, and E. coli.

4. Conclusion

During our continuing search for bioactive natural products
from marine-derived endophytic fungi, a novel depsidone,
phomopsidone A (1), together with excelsione (2) [3]
(i.e. phomopsidone[4]), and four known isobenzofuranones
(3–6) were isolated from the mangrove endophytic fungus
Phomopsissp. A123. The bioactivity assays demonstrated
that these compounds possess cytotoxic, antioxidant, and
antifungal activities.

Structurally, phomopsidone A (1) belongs to depsidones,
a group of secondary metabolites which were typically
produced by lichens, such as neotricone [16], salazinic acid
[17], and deoxystictic acid [18]. Recently, a growing number
of depsidones have been isolated from various fungi, such as
2 from an unidentified endophytic fungus [3]; phomopsides
from the mangrove endophytic fungus Phomopsis sp.
ZZF08 [19], excelsional from Phomopsis sp. CAFT69 [20],
corynesidones from the endophytic fungus Corynespora
cassiicola L36 [14], chaetosidone A from the endophyte
Chaetomium sp. [21], mollocellins from the fungal species
of Chaetomium brasiliense [15], and botryorhodines from
the endophytic fungus Botryosphaeria rhodina [22]. Among
those reported depsidones, the substitution pattern of ring
B in phomopsidoneA (1) is uncommon, with only 2 and
excelsional sharing the same structural moiety. Particularly,
the oxetane ring makes the structure of natural product 1
more unique.

Oxetanes have only been found in a few other natural
products, a majority of which are terpenoids, such as oxetanocin
A [23], dictyoxetane [24], merrilactone A [25], bradyoxetin
[26], and taxol [27] (Fig. 3). Among these naturally occurring
compounds, the oxetane unit is either tethered or fused to
diverse ring systems. For instance, the benzo-condensed
oxetanering (benzoxete) is often seen in some plant natural
products, such as 5-aryl-2-hydroxybenzoxete from the stem
of Caesalpinia decapetala [28], zizyberanone from the fruit of
Ziziphus jujuba Mill [29], and amentotaxone from Amentotaxus
formosana [30] (Fig. 3), while these oxetane units are substituted
by hydroxy or dimethyl groups.

Phomopsidone A represents the first natural product
containing non-substituted benzoxete unit. Benzoxete,
due to its significant roles in chemical and biological
approaches, has drawn great attentions to date [31,32].
However, the benzoxete-bearing structures were only
reported as chemically synthetic products or intermediates
in various reactions [33–36]. Due to high instability, the
synthesized unsubstituted benzoxete, which was the parent
compound for a number of benzo-condensed four-ring hetero-
cycles, was only characterized by IR [37,38]. The first isolable
benzoxete compound benzoxetene carrying methyl and acyl
groups had to be prepared and characterized by the 1H
and 13C-NMR spectra at low temperatures [34]. It was reported
that methyl substituents on the benzene ring stabilized
the benzoxete system only at a pure solid status, and the
attempt to identify methylated benzoxetes by NMR in solution
was unsuccessful [39]. Thus, in this work the isolation of
phomopsidone A carrying an unsubstituted benzoxete unit
might be helpful for understanding the nature's strategy for
stabilization of this important structural moiety.

Although depsidones have been reported to possess
antitumor [3,4,15,22], antibacterial [3,21], antifungal [15,22],
radical scavenging [14], antimalarial [15], and aromatase
inhibitory [14] activities, their pharmacological potential
has not yet been fully explored. Meanwhile, oxetanes have
been shown to be capable of improving key pharmaceutical
properties when grafted onto the target molecular scaffolds
[40]. Taking the antitumor drug taxol as an example, the
oxetane unit leads to rigidification of the overall structure [41];
the replacement of the oxetanemoiety resulted in significantly
lower activity [42,43]. Thus, our identification of the oxetane
containing phomopsidone A may suggest a new opportunity
for further drug development based on depsidones.

In final, the putative biosynthetic route of compound 1
was proposed (Fig. 4). Specifically, two differently substitut-
ed benzoic acid derivatives with a triketide or tetraketide
backbone might be synthesized after three or four time
elongations with malonate two-carbon units by correspond-
ing NR-PKS (non-reduced polyketide synthase). The exten-
sive hydroxylations are likely mediated by multiple oxidative
enzymes. The methyl groups on two aromatic rings might be
installed by methyltransferases. A depside could be formed
between two benzoic acid units by esterification followed by
an ester bond formation between the two hydroxy groups
on C-4 and C-6. Regarding the biosynthesis of benzoxete in
ring A, a dehydration initiated electrocyclization likely takes



Fig. 3. Natural products containing oxetanes (blue: oxetanes unit).

150 W. Zhang et al. / Fitoterapia 96 (2014) 146–151
place to form the four-ring heterocycle [39]. For the
intramolecular lactonization in ring B, inspired by biosynthe-
sis of the immunosuppressant mycophenolic acid [44,45], the
Fig. 4. A plausible biosynthetic
hydroxylation of C-17 methyl group catalyzed by a P450
monooxygenase likely occurs first. Then, a hydrolase might
be responsible for lactonization.
pathway of Compound 1.
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