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SUMMARY

The identification and design of efficient biocatalysts to address plastic waste accumulation are pressing

global challenges. Leveraging recent advancements in artificial intelligence (AI), we developed an integrated

machine-learning framework incorporating the geometric vector perceptron-graph neural network and

learn2learn models to yield robust and thermostable variants based on three representative polyethylene

terephthalate hydrolases (i.e., FAST-PETase, DepoPETase, and BHETase). The engineered hydrolase vari-

ants demonstrated up to a 5.5-fold improvement in hydrolytic activity across a temperature range of

40◦C–70◦C compared to the wild-type enzymes. Molecular dynamics simulations revealed key microenviron-

mental interactions sustaining hydrolytic activity at high temperatures—enhanced hydrogen bonding and

hydrophobic interactions around active sites—and highlighted the unbound dynamics of bis(2-hydroxyethyl)

terephthalate and mono-(2-hydroxyethyl) terephthalate near catalytic sites, motivating a two-enzyme system

that achieved a 1.5-fold increase in terephthalic acid production. This study demonstrates a scalable AI-

guided strategy for evolving robust polyethylene terephthalate hydrolases for industrial biodegradation.

INTRODUCTION

Among the petroleum-based plastics, polyethylene tere-

phthalate (PET) is one of the most widely produced synthetic

polymers, with a global manufacturing capacity exceeding 30

million tons annually. The extensive use of PET in packaging

and textiles, combined with its recalcitrant nature, has led to

pressing challenges in plastic waste management and environ-

mental pollution. Although considerable progress has been

made in developing biodegradable plastics,1–4 their market

presence remains limited compared to conventional nondegrad-

able plastics.2,5,6 Meanwhile, enzymatic PET degradation has

also been intensively studied using engineered hydrolases,

some of which have demonstrated activity at preparative or

industrially relevant scales.7–12 Given these limitations, biological

recycling through enzymatic PET hydrolysis has garnered signif-

icant interest, and various PET hydrolases, including IsPETase,13

Tfh,14 leaf-branch compost cutinase (LCC),15 Thc_Cut1,16

Thh_Est,17 and Hic,18 have been biochemically and structurally

characterized as potential candidates for PET depolymerization.

Efforts to enhance the efficiency and thermostability of PET

hydrolases have led to notable breakthroughs by protein engi-

neering campaigns.7,8,19–21 In 2020, an engineered variant of

LCC (LCC-ICCG) demonstrated 90% depolymerization of pre-

treated PET waste at high PET concentrations (200 g kg− 1),12

and recent works have extended PETase and LCC variants to

gram-scale or continuous processes.7–12 Further advancements

were achieved with DepoPETase, a highly engineered IsPETase

variant (T88I/D186H/D220N/N233K/N246D/R260Y/S290P) pro-

duced via directed evolution, capable of depolymerizing un-

treated PET wastes in a liter-scale reactor (0.4% Wenzyme/

WPET).20 Both LCC-ICCG and DepoPETase present robust scaf-

fold candidates for further engineering aimed at enhancing ther-

mostability and catalytic activity across variable temperature

ranges.

Recent advancements in computational redesign have paved

the way for significant progress in enzyme engineering.22

Leveraging machine-learning (ML) and mutagenesis technolo-

gies has enabled the rapid and cost-effective exploration of pro-

tein structures and functions. Through large-scale biological

data processing, deep-learning algorithms can decipher com-

plex protein sequence and structural data, effectively predicting

beneficial variants.23 For instance, the evolutionary scale

modeling (ESM)-1v protein language model developed by
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Facebook AI, based on Transformer architecture, allows for un-

supervised learning from vast protein sequence data, predicting

variants that outperform the wild type in stability or activity.24

ML-guided enzyme engineering circumvents some limitations

of directed evolution, such as high screening costs and

extended experimental cycles, by directly providing high-confi-

dence predictions on enzyme modifications. Recent studies,

including those by Alper’s group7 using MutCompute and by

Hu et al.25 using Bayesian optimization, have demonstrated

the efficacy of ML in identifying variants with enhanced activity

and stability through targeted predictions. Alper’s team used

MutCompute, a structure-based convolutional neural network

(CNN), to a stabilizing five-site variant (FAST-PETase, N233K/

R224Q/S121E/D186H/R280A) that exhibited superior PET-hy-

drolytic activity between 30◦C and 50◦C and a range of pH

levels.7 Besides this, Hu et al.25 used Bayesian optimization to

guide directed evolution, combining the sampling process with

iterative optimization of the proxy model, and successfully ob-

tained a four-site RhlA variant that could increase the product

selectivity by 4.8-fold after four rounds of iterations. These devel-

opments underscore the emerging trend of digital protein design

in synthetic biology.26

However, challenges remain in designing PET hydrolases

through ML, primarily due to the complexity of balancing enzyme

thermostability, catalytic efficiency, and substrate affinity.7,27,28

Current ML strategies often focus on limited functional metrics

(such as activity or stability), overlooking the potential trade-

offs in evolving enzymes with optimal functionality across

diverse and often conflicting properties.29,30 Additionally, exist-

ing models are typically optimized based on available datasets

with limited diversity, leading to predictions that may not gener-

alize well to novel enzyme scaffolds. Consequently, the predic-

tive power for functional and stable PET hydrolase variants

that operate effectively at high temperatures remains con-

strained. To address these issues, this study presents a multi-

tiered ML strategy that combines a geometric vector perceptron

(GVP)-graph neural network (GNN) model with iterative meta-

learning refinement through Gaussian and learn2learn models.

The two-round approach allows for a broader exploration of

mutational landscapes in the initial stage, followed by targeted

refinement based on the identified ‘‘best’’ variants (Figure 1A).

This strategy addresses several challenges in enzyme design,

including (1) achieving a more comprehensive search of func-

tional variants, (2) balancing thermostability with catalytic perfor-

mance, and (3) accommodating diverse structural scaffolds of

PET hydrolases. Additionally, we introduce an in silico scoring

criterion to evaluate enzyme robustness comprehensively and

systematically across different substitutions. Using molecular

dynamics (MD) simulations (Figure 1A), we also investigated

PET degradation to elucidate the mechanisms underlying hydro-

lytic activity at elevated temperatures and the microbehavior of

intermediates (bis-2-hydroxyethyl terephthalate [BHET] and

mono-2-hydroxyethyl terephthalate [MHET]). This alignment of

in vitro and in silico studies not only underscores the utility of

computational strategies in enzyme engineering but also high-

lights the importance of a two-enzyme system for efficiently pro-

ducing the terminal product, terephthalic acid (TPA), thereby

contributing to a sustainable solution for PET waste recycling.

RESULTS AND DISCUSSION

Development of a deep-learning framework for

engineering PET hydrolases

In this study, we applied deep-learning techniques, specifically

graph learning and meta-learning, aiming to narrow the candi-

date variant space and focus on residues at the enzyme-sub-

strate interaction interface. The effectiveness of this comprehen-

sive framework was validated on three representative protein

scaffolds of PET hydrolases (two PETases: FAST-PETase and

DepoPETase; and a BHETase: BsEst), the latter serving as a

critical catalyst in PET biodepolymerization. In the first phase,

we employed the optimized (GVP-GNN) model. This model en-

hances the ability to learn geometric relationships between no-

des by incorporating geometric vector representations into the

GNN framework. Each amino acid is treated as a node in

the graph, with edges representing interactions between resi-

dues. To better capture spatial structure, dihedral angles, elec-

trostatic charges, and other microenvironmental properties, we

augmented node features with amino acid isoelectric point (pI)

information31 (Figure 1B). We assigned the pI value of each

amino acid residue using its theoretical value derived from the

Bjellqvist pKa scale,32 as retrieved from publicly available

biochemical databases. These standard values were uniformly

applied across all residues to maintain computational efficiency.

We acknowledge that fixed pI values cannot fully represent

charge rearrangements occurring during substrate interactions.

This approximation was selected to ensure computational

efficiency, while more rigorous treatments would require signifi-

cantly greater computational resources. Each pI value was en-

coded as a scalar node feature and integrated with other

Figure 1. Graph-learning- and meta-learning-guided two-round predictions improve enzyme performance

(A) Workflow of enzyme performance improvement. GVP-GNN was adapted to predict mutants by assessing the difference between the original type of amino

acid and the predicted type with the highest probability at a given site. Mutants closer to the active site or ligand (after docking) were more likely to be selected as

experimental candidates. Based on the results of the first-round experiments, meta-learning was utilized to predict second-round mutants. Subsequently,

molecular dynamics (MD) simulation was employed to understand the microscopic mechanism.

(B) Structural features and pI are input into a graph following transformations by GVP layers. The input graph undergoes further transformation through message-

passing layers, influencing the embedding of residues based on their neighboring node and edge embedding. Finally, the node embeddings from the output

graph are employed for mutant prediction, relying on probability and undergoing another GVP transformation.

(C) The embedding, derived from a fine-tuned ESM2 model and first-round experimental data, is divided into support and query sets denoted as X and Y,

respectively. The following steps are repeated for all episodes of the meta-training dataset until the learner converges to a good set of meta-parameters: (1)

sample a batch of episodes from the meta-training dataset; (2) train the adapter based on the support sets of the batch, compute the listwise loss and gradients,

and update the adapter’s parameters; (3) use the updated parameters of the adapter to compute the meta-loss based on the query sets of the batch; and (4)

compute the meta-gradients, followed by the meta-parameters based on the meta-loss, and update the learner’s parameters.
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Figure 2. Machine-learning-guided predictions improve enzyme performance across AST-PETase, DepoPETase, and BsEst scaffolds

(A) Biodegradation mechanisms of PET. PET, polyethylene terephthalate; TPA, terephthalic acid; EG, ethylene glycol; BHET, bis-2-hydroxyethyl terephthalate;

MHET, mono-2-hydroxyethyl terephthalate.

(B–D) Top 20 substitutions are distributed in the (B) FAST-PETase, (C) DepoPETase, and (D) BsEst protein structure by machine learning.

(E) The blue heatmap (left) shows the PET-hydrolytic activity of the resulting variants, and the histogram (right) shows the fold change of activity over FAST-

PETase and DepoPETase scaffolds. The total PET monomers (the sum of TPA, MHET, and BHET) were released from hydrolyzing circular gf-PET film

(6-mm-diameter pieces, roughly 67 mg) after 120 h of incubation at temperature ranging from 40◦C to 70◦C. Statistical normative scores calculated by assigning

weights of 10%, 20%, 30%, and 40% to the TPA yield under 40◦C, 50◦C, 60◦C, and 70◦C, respectively.

(legend continued on next page)
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physicochemical properties as input to the GVP-GNN, enabling

better representation of local electrostatic environments relevant

to thermostability and catalysis. The microenvironment of the

protein, including backbone and pI information, was concate-

nated and fed as input features to the GVP layer, forming the

initial input graph. Using a message-passing mechanism, nodes

iteratively updated their feature representations by interacting

with their neighbors, allowing the model to capture complex in-

terdependencies among residues. The final output predicted

the probability distribution of 20 possible amino acids for each

site. Additionally, we integrated predicted variant probabilities

with spatial information, such as the distance between candidate

residues and the specific substrate molecule. This combined

analysis allowed us to select the top ten candidates for experi-

mental validation. We note that ML models may exhibit predic-

tion bias (over- or underestimation) in absolute activity values.

In this work, the models were primarily used for relative ranking

of variants, with experimental assays providing validation and

feedback for iterative refinement in the design-test-learn cycle.

In the second phase, we employed a meta-learning strategy,

which excels in handling small-sample data compared to tradi-

tional methods like learn2learn and Gaussian processes. For

BsEst, experimental data at multiple temperatures were treated

as separate tasks, each containing a support set and a query set.

A pretrained protein language model based ESM2 was utilized

for meta-learning to better fit enzyme activity data with limited

samples. In detail, to enhance the sequence embedding of

BsEst, we used hhblits to retrieve homologous sequences and

fine-tuned the protein language model ESM2 using this

sequence set. The fine-tuned ESM2 embeddings were then

divided into support and query sets for model diagnosis through

meta-learning using the model-agnostic meta-learning (MAML)

framework (Figure 1C). Our meta-learning strategy currently re-

lies solely on sequence embedding (ESM2), which may limit

cold-start performance. Future work integrating structural or

phylogenetic features could further enhance predictive accuracy

and broaden applicability.

GVP-GNN model to predict the round I variants for

enhancing thermostability toward three PET hydrolases

with two types of protein scaffolds

The highly focused protein engineering approaches usually

cannot consider the evolutionary trade-off between overall sta-

bility and activity, and the last few years have witnessed impres-

sive progress in tailoring natural enzymes by computational

redesign strategies.22 Specifically, the engineered FAST-

PETase through CNN7 and DepoPETase20 by directed evolution

showed marvelous capability in hydrolyzing PET into monomers

(including BHET, MHET, TPA, and ethylene glycol [EG]) at high

temperature (50◦C–60◦C, Figure 2A). Additionally, our previous

study identified BHETase, which catalyzes the conversion of

the intermediate product BHET into the terminal monomer TPA

(Figure 2A). Based on these two promising PETase scaffolds

(FAST-PETase and DepoPETase) and one BHETase scaffold

(BsEst), we first employed the refined GVP-GNN model to further

predict their extra tailorable positions (Figures 2B–2D). Discrete

probability distributions for all 20 standard amino acids at each

position across the three protein scaffolds were generated,

effectively conducting an in silico integrated mutagenesis scan.

The predictions were ranked based on their probabilities, and

the top ten site distributions were illustrated on the 3D structure

of the protein to identify locations where the wild-type amino

acid residues poorly matched potential substitutions

(Figures 2B–2D). We subsequently evaluated PET-hydrolytic ac-

tivity of these variants across a range of temperatures from 40◦C

to 70◦C using an amorphous PET film (gf-PET, from the supplier

Goodfellow).33 An in silico scoring criterion was introduced to

comprehensively assess the robustness of these variants

(Figures 2E and 2F). For each variant, we quantified TPA produc-

tion at four representative temperatures (40◦C, 50◦C, 60◦C, and

70◦C for FAST-PETase and DepoPETase). A normalized score

was then calculated as a weighted sum of TPA concentrations

using the formula

Normalized score = (C40 × 10%) + (C50 × 20%) + (C60 × 30%) +

(C70 × 40%),

where Cx denotes the TPA concentration (mM) at temperature x.

This weighting reflects the greater relevance of high-temperature

activity in industrial PET degradation. A similar strategy was used

for BHETase variants, evaluated across 30◦C–60◦C.

Overall, the beneficial rate is ranging from 20% to 75% under a

range of investigated temperatures from 40◦C to 70◦C

(Figure 2E, top). Among the predicted top ten variants, FAST-

Y61Q demonstrated a 1.9-fold and 4.9-fold increase in PET-hy-

drolytic products at 60◦C and 70◦C, respectively. Aligning with

the in silico scoring criteria, FAST-Y61Q (score: 4.32) signifi-

cantly outperformed the FAST-PETase scaffold (score: 2.17).

Variants based on the DepoPETase scaffold exhibited an

extended operational temperature range of 40◦C–70◦C, which

was generally higher than that of the FAST-PETase scaffold var-

iants (Figures 2E and S1A). The best-performing variant from the

DepoPETase scaffold was DepoPETase-S181Y, which achieved

normalized scores of 4.27, resulting in 1.6-fold and 4.9-fold

higher activity at 50◦C and 60◦C, respectively. The crude en-

zymes of FAST-Y61Q and DepoPETase-S181Y showed the

highest overall degradation of all variants, and temperatures

tested at 50◦C and 60◦C released 7.63 mM and 9.56 mM PET

monomers (the sum of BHET, MHET, and TPA), respectively,

over 96 h (Figure 2E). In addition, the reaction progression pro-

files of both FAST-Y61Q and Depo-S181Y were monitored at

60◦C (Figures S1C and S1D). To thoroughly evaluate the catalytic

adaptation of the variant enzymes under varying environmental

conditions, FAST-Y61Q, Depo-S181Y, and their respective pro-

tein scaffolds were assessed across a pH range of 5.5–8.5 using

amorphous gf-PET (Figure S2). These results underscore that

GVP-GNN-guided predictions significantly enhanced enzyme

(F) The blue heatmap (left) shows the terminal TPA production of the resulting variants, and the histogram (right) shows the fold change of activity over the BsEst

scaffold. TPA production released from hydrolyzing 5 mM BHET by the BsEst variants after 6 h of incubation at temperature ranging from 30◦C to 60◦C. Statistical

normative scores calculated by assigning weights of 10%, 20%, 30%, and 40% to the TPA yield under 30◦C, 40◦C, 50◦C, and 60◦C, respectively.

All measurements were conducted in triplicate (n = 3), and the mean values were used for generating heatmaps and histograms.
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activity while extending the operational temperature and pH

range across all scaffolds. To benchmark the performance of

our designed enzymes, we compared the representative variants

FAST-Y61Q and DepoPETase-S181Y with the state-of-the-art

TurboPETase and HotPETase under identical conditions. As

shown in Figure S4, both variants exhibited comparably higher

TPA release after 48 h, demonstrating that our ML-guided design

can generate competitive or superior PET-degrading enzymes

relative to existing high-performance PETases.

Next, we sought to investigate the generalizability of our GVP-

GNN method by investigating another protein scaffold,

BHETase. Although the beneficial rate ranges from 5% to 45%

regarding the investigated temperatures (Figure 2F, top), the

top ten BsEst variants identified by the GVP-GNN model showed

no significant enhancement in catalytic activity at temperatures

ranging from 30◦C to 60◦C. The L110A variant, which had the

highest normalized score (1.74), only achieved a 1.2-fold in-

crease compared to wild-type BsEst (1.45). While L110A pro-

duced 1.5-fold increased TPA at 60◦C and demonstrated the

highest TPA production at 30◦C and 50◦C, this performance

was still below our expectations. Subsequently, we expanded

the recommended range of the GVP-GNN model to include the

top 20 variants, finding that the next ten variants had significantly

lower comprehensive scores than the top ten (Figure 2F). Given

these results, we prioritized further optimization of BsEst through

the meta-learning strategy (Gaussian model and learn2learn) to

enhance its performance. This decision allowed us to efficiently

allocate experimental resources to the scaffold that most

required improvement while also demonstrating the adaptability

and complementarity of the two-round ML strategy.

Meta-learning was used for round II predictions to

identify extra robust BHETase variants

Based on the experimental results from round I, where the GVP-

GNN model recommended the top 20 variants, we employed

meta-learning with both the Gaussian model and the learn2learn

model to fit the respective experimental results in Figure 2. We

then evaluated the hydrolytic activity of BHET at temperatures

ranging from 30◦C to 60◦C for the top ten variants recommended

from each model, as illustrated in Figures 3B and 3C. Notably,

Figure 3D demonstrates that the number of beneficial variants

identified in round II using the Gaussian model and the learn2-

learn model significantly exceeded those identified in round I

with the GVP model. Among these variants, the BsEst L465V,

which achieved a normalized score of 1.97 from the Gaussian

model, exhibited a 3.1-fold increase in terminal product TPA

compared to the wild type at 60◦C. Meanwhile, the BsEst

Y109R variant, which received the highest score of 2.69 from

the learn2learn model, surpassed the wild-type BsEst score of

1.45. Interestingly, Y109R demonstrated superior activity across

a range of temperatures (30◦C–60◦C), with a TPA yield that was

5.5-fold greater than that of the wild type at 60◦C.

Encouraged by these promising results, we monitored the

BHET hydrolysis progress at a high temperature of 60◦C using

the purified Y109R and L465V variants. As depicted in

Figures 3H and S3, both variants achieved complete conversion

of BHET within 9 h and 100% TPA yield within 12 h. Notably, the

rate of TPA production by Y109R (0.5 mM/h) was higher than that

of L465V (0.35 mM/h).

Next, we compared three state-of-the-art ML algorithms—

ESM-1V,24 EvMutation,34 and DeepSequence35—with the algo-

rithms used in this study (Figures 3E–3G). Since we explored only

10–40 variants for each enzyme, and BsEst Y109R and FAST-

Y61Q consistently ranked among the top three predicted vari-

ants, we focused our efforts on experimentally validating the

top three variants identified by three state-of-the-art ML algo-

rithms. It should be noted that comparisons with other models

were limited to the top three predictions due to experimental

cost constraints and thus were intended to provide context

rather than to establish rigorous performance ranking. Collec-

tively, the number of beneficial variants at medium temperatures

(30◦C–50◦C) was notably higher than at high temperatures

(60◦C–70◦C). To systematically identify beneficial variants, we

assigned varied weights (10%, 20%, 30%, and 40%) to gradient

temperatures and tallied the optimal variant scores from each

algorithmic model (Figure 3I). In round II, the meta-learning strat-

egy leveraged episodic sampling and a ranking-based loss

(ListMLE) to prioritize stable BHETase variants from limited

training data, distinguishing it from conventional regression-

based approaches. Our method systematically identified supe-

rior beneficial variant scores across all models, outperforming

ESM-1V, EvMutation, and DeepSequence, particularly for

BHETase (Figure 3I). While our framework generally outper-

formed baseline models, we note that EvMutation achieved

comparable or superior predictions in certain cases. This likely

reflects the strength of evolutionary constraints embedded in Ev-

Mutation, which are especially informative for mutations occur-

ring at highly conserved positions.34 These results collectively

demonstrate that the ML approach proposed in this study, com-

bined with in silico scoring criteria, is most likely to address the

persistent challenges associated with engineering robust PET

hydrolases. Owing to the dense molecular packing and limited

Figure 3. Machine-learning-guided predictions improve enzyme performance across BsEst scaffolds

(A–C) (A) Biodegradation mechanisms of BHET. Top ten substitutions are distributed in the wild-type BsEst protein structure by (B) Gaussian model and

(C) learn2learn model.

(D) The blue heatmap (left) shows the terminal TPA production of the resulting variants, and the histogram (right) shows the fold change of activity over the BsEst

scaffold. TPA production released from hydrolyzing 5 mM BHET by the BsEst variants after 6 h of incubation at temperature ranging from 30◦C to 60◦C. Statistical

normative scores calculated by assigning weights of 10%, 20%, 30%, and 40% to the TPA yield under 30◦C, 40◦C, 50◦C, and 60◦C, respectively. All mea-

surements were conducted in triplicate (n = 3), and the mean values were used for generating heatmaps and histograms.

(E–G) Algorithmic comparison of ESM-1V model, EvMutation model, and DeepSequence model based on the (E) FAST-PETase, (F) DepoPETase, and (G) BsEst

scaffolds.

(H) Biodegradation performance of TPA production from BsEst upon incubation on BHET. Reaction conditions: 5 mM BHET at 30◦C in buffer (pH 7.5) for 24 h.

Error bars correspond to the standard deviation (SD) of three measurements (n = 3).

(I) The highest-scoring variants were counted under four algorithms.
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Figure 4. Molecular insight into the overall structure of FAST-PETase and DepoPETase variants

(A) The time-averaged RMSD of the backbone atoms (Cα, N, and carbonyl C) of the FAST-PETase, DepoPETase, and their variants with respect to the initial

structure at 30◦C and 60◦C, respectively, determined from the last 40 ns of MD simulation.

(B) The number of hydration shells of the FAST-PETase, DepoPETase, and their variants at 30◦C and 60◦C, respectively, during last 40 ns simulation from three

independent runs. The hydration shell was defined as water molecules whose oxygen atom was localized at a distance less than 3.5 Å from any nonhydrogen

atom of the enzyme.

(legend continued on next page)
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chain mobility of highly crystalline PET, most PET hydrolases are

unable to efficiently catalyze depolymerization directly.36,37

Complete degradation of high-crystallinity PET substrates,

therefore, typically requires additional chemical or physico-

chemical pretreatment steps—such as thermal annealing, me-

chanical milling, or solvent swelling—to increase polymer acces-

sibility and create more amorphous regions.38–40 Integrating

such pretreatment strategies with the use of high-performance,

ML-screened enzyme variants offer a promising route toward

efficient and scalable PET recycling. The synergistic combina-

tion of substrate activation and catalyst optimization could sub-

stantially lower energetic barriers, enhance hydrolysis kinetics,

and enable the conversion of otherwise recalcitrant PET into its

monomeric building blocks under mild conditions. This integra-

tive approach not only bridges material and enzyme engineering

but also lays the groundwork for a closed-loop sustainable

plastic upcycling process.

Unraveling the structural basis for enhanced

thermostability

To investigate the effect of high temperature on enzyme activity,

we conducted MD simulations for wild-type FAST-PETase,

DepoPETase, BsEst, and their identified variants. This approach

allowed us to examine structural and solvation phenomena from

a molecular perspective (Figure 4). During the simulations, we

closely monitored the root-mean-square deviation (RMSD) and

root-mean-square fluctuation (RMSF) of the backbone atoms,

including Cα, N, and carbonyl C, to assess thermal fluctuations

in protein conformation (Figures 4A, 4C, 4D, S5, and S8). The

RMSD values indicated that the four variants (FAST-Y61Q,

Depo-S181Y, BsEst-L465V, and BsEst-Y109R) exhibited mini-

mal changes of less than 0.3 Å, even at 60◦C (Figures 4A and

S5). Notably, FAST-Y61Q and Depo-S181Y displayed higher

RMSF fluctuations observed at the Y61 site of FAST-PETase

and the S181 site of DepoPETase (∼1 Å) but with similar RMSF

trends within substrate-binding cleft regions (Figures 4C and

4D). This observation correlated with a decrease in the number

of hydrogen bonds around these variant sites (Figures 4C and

4D). In proteins, hydrogen bonds are typically defined by a

hydrogen–acceptor distance of less than 2.5 Å and a donor-

hydrogen-acceptor angle between 90◦ and 180◦, which reflects

the most commonly accepted geometric criteria.41 These results

suggest that substitutions at Y61 and S181 induce significant

structural fluctuations in localized regions but have a limited

impact on the overall enzyme structure, indicating that the cata-

lytic function of the variants enables them to be maintained even

at elevated temperatures. The maintenance of a sufficient num-

ber of hydrogen bonds was evidenced by calculations of

numbers of internal hydrogen bonds in overall and local regions

along with a complex network of hydrogen-bonding interactions

around the substitution sites (Figures 4C, 4D, and S9–S11). The

latter plays a crucial role in preserving structural stability. Further

details regarding the structural analysis from the MD simulations

can be found in Figures S5–S11 and Note S1. In addition to

hydrogen-bonded stabilization, we analyzed the B factors of

the top variants (Figure S5) to evaluate residue flexibility. Several

sites, including FAST-Y61, FAST-S181, FAST-I182, FAST-A214,

and Depo-Y61, displayed relatively higher B-factor values,

implying increased local dynamics that may facilitate substrate

accommodation. These results indicate that our design strategy

balances thermal stability with catalytic adaptability, aligning

with the dual objective of enhancing both enzyme robustness

and activity toward plastic substrates.

Additionally, the solvation phenomena observed through MD

simulations clearly demonstrated the driving force behind the

enhanced degradation capacity observed between the model

substrates 4PET/BHET and their variants.43,44 The hydration

shell—defined as water molecules with oxygen atoms located

within 3.5 Å of any non-hydrogen atom of the enzyme41—re-

mained largely unchanged in the four variants (FAST-Y61Q,

Depo-S181Y, BsEst-L465V, and BsEst-Y109R) compared to

their respective wild-type scaffolds (Figures 4B and S12). The

number of water molecules around the active sites of FAST-

Y61Q and Depo-S181Y (3.58 and 5.02) was significantly lower

than that of FAST-PETase and DepoPETase (6.47 and 8.06) at

30◦C. Less space occupied by water molecules in the active

pocket facilitates the entry of the hydrophobic substrate 4PET/

BHET into the vicinity of the catalytic triad and promotes the hy-

drolysis reaction (Figures 4E and S14). These results are aligned

with the observed changes in the distance between the nucleo-

philic Ser and substrate 4PET over the 100 ns simulation period

within the catalytic triad (Figures 4F, S15, and S16). However, at

high temperature (60◦C), the number of water molecules did not

show a significant difference, and the reaction distance ex-

hibited a corresponding result (Figure S14), suggesting that there

may be other reasons promoting the catalytic efficiency of the

variants, such as the conformational change of the active

pockets, and the main reason may be the enhanced thermosta-

bility of the overall structure of the variants analyzed above

(Figure 4A), which maintains its own activity. The increased

(C) RMSF of the wild-type FAST-PETase and FAST-Y61Q variant at 30◦C and 60◦C, respectively, determined from the last 40 ns of MD. The pink stick represents

the model substrate 4PET; the blue sphere represents the substitution of Y61; and the blue loop represents the regions of large fluctuations in RMSF values.

Hydrogen-bond network of FAST-PETase and FAST-Y61Q within 4.6 Å around Y61. Residues within 4.6 Å are presented as lines, Y61 is presented as a stick, and

both are colored blue.

(D) RMSF of the wild-type DepoPETase and Depo-S181Y variants at 30◦C and 60◦C, respectively, determined from the last 40 ns of MD. The pink stick represents

the model substrate 4PET; the green sphere represents the substitution of S181; the green loop represents the regions of large fluctuations in RMSF values.

Hydrogen-bond network of DepoPETase and Depo-S181Y within 3.55 Å around S181. Residues within 3.55 Å are presented as lines, S181 is presented as a stick,

and both are colored green. Data plotted from the average of three independent MD runs (n = 3).

(E) Number of water molecules around the active site (S134) of the FAST-PETase, DepoPETase, and their variants at 30◦C and 60◦C, respectively. The distance

around S134 was delineated as 6.6 Å, which was predicted by the DEPTH server (http://cospi.iiserpune.ac.in/depth).42 Error bars correspond to the SD of three

independent MD runs (n = 3).

(F) Distance curves of FAST-PETase, DepoPETase, and their variants between the hydroxyl oxygen atom (OG) of S134 and the carbonyl carbon atoms (C40) of

4PET at 100 ns simulation proceeding at 30◦C.
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number of water molecules at the mutation sites could enhance

catalytic efficiency (Figure S14A). Collectively, the synergistic

effects of structural stability and catalytic capacity resulting

from the introduction of FAST-Y61Q and Depo-S181Y contribute

to an improved catalytic performance, especially at elevated

temperatures (60◦C). A similar conclusion was also reached for

BsEst with the substrate BHET (Figures S5, S6B, S7C, S8,

S9B, S10–S13, S14B, and S16). To enhance the reliability of

the MD simulation data in this study, longer 1 μs MD simulations

were conducted under identical conditions, yielding comparable

results. Detailed analyses are provided in Note S1.

Construction of a two-enzyme system in PET

depolymerization guided by the molecular behaviors of

intermediates

In a recent study, Wang et al. employed high-level quantum me-

chanics/molecular mechanics (QM/MM) calculations, specif-

ically density functional theory (DFT), to accurately determine

reaction barriers and elucidate the catalytic mechanism of

PETase.45 PETase-catalyzed PET degradation involves four

steps: (1) nucleophilic attack triggered by Ser-His-Asp, (2) cleav-

age of the C–O bond, (3) nucleophilic attack by water molecule,

and (4) PETase deacylation. Notably, we observed that during

the C–O bond cleavage step (step 2) and the subsequent PETase

deacylation (step 4), intermediate products BHET and MHET are

released from the active site.45 This finding aligns well with the

composition of PET degradation products detected using high-

performance liquid chromatography (HPLC) as reported previ-

ously.33 Experimental observations revealed that PET hydrolase

(LCC) was predominantly collected from PET film rather than in

solution, suggesting a strong affinity of PET hydrolase for binding

to PET film.46

Based on insights derived from both computational calcula-

tions and experimental data, we proposed the construction of a

dual-enzyme system to enhance the biodegradation of PET

(Figure 5A). Prior to implementing this system, spatial distribution

function (SDF) calculations were performed to analyze the

arrangement of water molecules in the BHET and MHET interme-

diates. Simulations over 100 ns indicated that BHET and MHET

remained solubilized, as evidenced by a significant decrease in

the number of surrounding water molecules (Figure S17). This

observation was further corroborated by the distances between

the intermediates (BHET and MHET) and the nucleophilic serine

exceeding 10 Å (Figures 5B and 5C). Furthermore, it was noted

that BHET and MHET faced challenges in accessing the catalytic

triad due to their positioning on the protein surface (Figure 5E),

and they were rapidly displaced from the enzyme surface when

model 4PET occupied the active site (Figure 5F). Given these

computational results, we decided to introduce BHETase (BsEst),

an enzyme responsible for converting intermediates into the ter-

minal product TPA, into the PETase single-enzyme system. The

incorporation of BHETase resulted in a significant 1.32-fold in-

crease in TPA yield compared to the single-enzyme system

(FAST-PETase and DepoPETase, Figures 5G and 5H). Further-

more, the integration of both PETase (FAST-Y61Q and Depo-

S181Y) and BHETase (Y109R), engineered through ML

algorithms, yielded a dual-enzyme system that produced homo-

geneous TPA with a 1.5-fold increase in yield. Notably, the rate of

TPA generation in this enhanced two-enzyme system was up to

1.9 times greater than that of the previous system, measured

over 48 h.

These findings were further substantiated by scanning elec-

tron microscopy (SEM) analysis and water contact angle mea-

surements, which together provided supportive evidence of sur-

face erosion and increased hydrophilicity of the PET films

(Figures 5G and 5H). While more detailed bulk analyses such

as size-exclusion chromatography or differential scanning

calorimetry could further characterize polymer degradation,

our current study focuses primarily on evaluating the catalytic

performance of the engineered enzymes. The observed morpho-

logical changes and surface wettability shift correlate well with

the enhanced TPA release, offering reliable indirect indicators

of enzyme-mediated depolymerization. Specifically, the two-

enzyme system demonstrated a remarkable capacity to effec-

tively degrade the PET film, resulting in a reduction of the water

contact angle by 25.6◦ and 21.7◦, respectively, and producing a

visibly rougher surface. Additionally, calculations of the signal-

to-noise ratio (SNR) through image analysis revealed a correla-

tion with the amount of released TPA from both the single- and

two-enzyme systems (R2 > 0.8, Figure 5D). This collective align-

ment of molecule-behavioral observations with experimental

data robustly supports the finding that the dual-enzyme system

plays a pivotal role in enhancing PET biodegradation. Nonethe-

less, further exploration of the quantitative relationships between

SEM characterization and degradation effects is warranted to

develop a novel evaluation system for PET degradation.

Figure 5. Two-enzyme degradation system including PETase and BHETase

(A) An overview of the two-enzyme degradation system. Icon graphics of this figure were created by BioRender.com.

(B) Average distances of FAST-PETase, DepoPETase, and their variants between the hydroxyl oxygen atom (OG) of S134 and the carbonyl carbon atom (C10) of

ten BHET molecules at 30◦C and 60◦C, respectively, during 100 ns of MD.

(C) Average distances of FAST-PETase, DepoPETase, and their variants between the hydroxyl oxygen atom (OG) of S134 and the carbonyl carbon atom (C8) of

ten MHET molecules at 30◦C and 60◦C, respectively, during 100 ns of MD.

(D) Linear regression between signal-to-noise ratio (SNR) and TPA released. The SNR is defined as the ratio of the average image signal value μsig to the SD of the

image signal σsig.

(E and F) Spatial distribution function (SDF) of intermediate BHET and MHET on the surface of FAST-Y61Q and Depo-S181Y at 60◦C when (E) 4PET was free in the

system and (F) 4PET occupied the active site in a docking pose. Red represents the model substrate 4PET; green represents the intermediate productions

including BHET and MHET; blue represents water molecules; and yellow represents the active site (S134). The 180◦ rotation offered to give a complete view of

FAST-Y61Q and Depo-S181Y.

(G and H) Time course of PET depolymerization in a two-enzyme system with different PET hydrolases, including (G) PETase and (H) DepoPETase, and the

corresponding SEM images (upper panels) and water contact angle analysis (lower panels) of the PET film in the two-enzyme degradation system. Error bars

correspond to the SD of three independent MD runs (n = 3).

Please cite this article in press as: Li et al., Integrating graph learning and meta-learning to enhance PET hydrolase activity at elevated temperatures,

Cell Reports Physical Science (2025), https://doi.org/10.1016/j.xcrp.2025.103037

Cell Reports Physical Science 7, 103037, January 21, 2026 11

Article

ll
OPEN ACCESS

http://BioRender.com


This study presents an integrated ML framework, incorporating

a two-round approach (round I: GVP-GNN model; round II:

Gaussian model and learn2learn model) to comprehensively

identify beneficial variants of PETase and BHETase by

only exploring such a small library (10–40 variants). By applying

in silico scoring criteria, we successfully engineered robust vari-

ants from the FAST-PETase and DepoPETase scaffolds, namely

FAST-Y61Q and Depo-S181Y, as well as from the BHETase scaf-

fold, including BsEst-L465V and BsEst-Y109R, demonstrating

enhanced catalytic activity and functional stability across a broad

temperature range (40◦C–70◦C), as supported by experimental

assays and MD simulations. Importantly, the ML framework in

this study outperformed existing models such as ESM-1V,

EvMutation, and DeepSequence in identifying beneficial variants

with the highest score, particularly for BHETase. Despite its suc-

cess, our ML framework has certain limitations. For instance, it

may not perform optimally for highly complex proteins that lack

high-confidence structural data or detailed active-site informa-

tion. Additionally, the framework’s second stage (meta-learning

with Gaussian and learn2learn) currently relies solely on

sequence-based protein characterization models. Incorporating

structural information in this stage could be a promising direction

for future enhancements, potentially improving the framework’s

predictive power and applicability to a broader range of proteins.

Besides, MD simulations offered molecular insights into the be-

haviors of intermediates, confirming that the construction of a

dual-enzyme system effectively accelerates the homogeneous

production of TPA. Collectively, this innovative synergy between

the ML framework and the dual-enzyme system significantly con-

verts PET hydrolase (PETase and BHETase) scaffolds into broad-

range biocatalysts. These findings offer a proof of concept for

scalable PET hydrolase engineering and highlight the potential

of ML-assisted strategies to improve monomer yields under

industrially relevant conditions. This study demonstrates the

strength of meta-learning in enzyme engineering, enabling gener-

alization to new conditions (e.g., 60◦C) with limited data. Our

framework achieved about 20% success in identifying beneficial

variants from only 10–40 candidates per round, highlighting its ef-

ficiency and practicality. Although systematic ablation analyses

were beyond the current experimental scope, future work will

further refine and expand this paradigm.

METHODS

Chemicals, reagents, and materials

Substrates and reaction products, including BHET, TPA, and

higher-purity chemicals, were purchased from Merck (Darm-

stadt, Germany) and Sigma-Aldrich (St. Louis, MO, USA),

respectively. The amorphous PET film was purchased from

Goodfellow (UK, product code: ES303010) and cut into 6-mm-

diameter pieces (roughly 67 mg) for further experiments. Genes

encoding FAST-PETase (IsPETaseD186H/R280A/N233K/R224Q/S121E,

IsPETase GenBank: BBYR01000074) and DepoPETase

(IsPETaseT88I/D186H/D220N/N233K/N246D/R260Y/S290P) were commer-

cially synthesized by Tsingke Biotechnology (Nanjing, China)

with codon optimization for expression in Escherichia coli

BL21 cells. BsEst was identified in our previous study and stored

in our lab.33

Site-directed mutagenesis

Variants of FAST-PETase, DepoPETase, and BsEst were con-

structed by PCR plasmid amplification. PCR products were

incubated with DpnI (New England Biolabs, Ipswich, MA, USA)

to digest the original DNA template, then separately transformed

into E. coli DH5α (heat shock at 42◦C for 45 s), followed by ex-

pressing in E. coli BL21(DE3). Finally, the introduced mutations

were confirmed by sequencing (Tsingke Biotechnology).

Enzyme expression and purification

The recombinant bacteria were inoculated into Luria-Bertani (LB)

liquid medium (100 μg/mL ampicillin) and grown overnight at

37◦C/200 rpm for 14 h. The 2% cell cultures were transferred

into 100 mL of LB liquid medium (100 μg/mL ampicillin) and

shaken at 37◦C/200 rpm for 3 h. When the optical density at

600 nm (OD600) reached 0.6–0.8, isopropyl-1-thio-β-D-galacto-

pyranoside (IPTG) was added to final concentrations of

0.1 mM and grown overnight at 20◦C/200 rpm for 24 h. Subse-

quently, supernatants were collected by centrifugation

(8,000 × g for 10 min at 4◦C) and resuspended in 50 mM Tris-

HCl buffer (pH 7.5) after washing twice with buffer (pH 7.5).

The washed cells with 1 mg/mL lysozyme were disrupted by son-

ication (3-s pulse on, 5-s pulse off, amplitude 35%). Cell debris

was removed by centrifugation (8,000 × g at 4◦C for 1 h), and

the supernatants were filtrated by a 0.22-μm filter (Choice filter,

Thermo Scientific). To obtain the purified enzymes, the samples

were then applied to a 5-mL HisTrap HP column (GE Healthcare).

After washing unbound proteins (20 mM imidazole), the target

protein was collected by 250 mM imidazole. The concentration

of protein was determined using a protein assay kit (BCA Protein

Assay Kit; Genstar, Beijing, China) with BSA as the standard, and

the purity of each protein was checked by SDS-PAGE analysis.

PET depolymerization assay to screen variants using gf-

PET films

To evaluate the variants’ activities, the amorphous gf-PET film

(Goodfellow, 1 mm thickness, 6 mm diameter, roughly 67 mg)

was soaked in 1,980 mL of 50 mM Tris-HCl buffer (pH 8.5) with

20 μL of purified enzymes at different temperatures (40◦C–

70◦C) for 24 h. The reactions were terminated by heat treatment

(100◦C, 10 min). The supernatant obtained by centrifugation

(8,000 × g, 5 min) was then analyzed by Agilent 1200 and Ulti-

mate 3000 UHPLC systems equipped with a Welch Ultimate

XBC18 column (4.6 × 250 mm, 5 μm, Welch Materials, Shanghai,

China) to quantify PET monomers released from PET depolymer-

ization. The mobile phase was 40% methanol with 0.12% acetic

acid (pH 2.5) at a flow rate of 0.7 mL min− 1, and the effluent was

monitored at a wavelength of 240 nm.

Variant screening for effective hydrolysis of BHET into

TPA

When using BHET as the reaction substrate, appropriate

amounts of crude wild-type BsEst and each colony of the variant

were incubated with 5 mM BHET in a buffer containing 50 mM

Tris-HCl (pH 7.5) at different temperatures (30◦C–60◦C), and

samples were taken regularly. The supernatant was obtained

by centrifugation (8,000 × g, 5 min) and analyzed by HPLC.
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Depolymerization of untreated post-consumed PET

products by a two-enzyme system

PET films for the experiment were obtained from commercial

suppliers and cut into 6-mm-diameter pieces (12–23 mg). The

commercial post-consumed PET (pc-PET) was treated by a

two-enzyme system, combining FAST-PETase/DepoPETase

variants with BsEst in 1,960 μL of 50 mM Tris-HCl (pH 8.5). The

reaction mixture was incubated at 60◦C, and the fresh enzyme

solution was supplemented every 24 h for depolymerization.

The reactions were then terminated by heat treatment

(100◦C, 10 min). The supernatant obtained by centrifugation

(8,000 × g, 5 min) was then analyzed by HPLC.

SEM

The morphology of PET films before and after enzyme exposure

was examined following a previously reported procedure.8

Water contact angle

The water contact angle of PET films before and after enzyme

exposure was examined following a previously reported

procedure.33

Cold-start variant selection

Screening the optimal pose and candidate substitutions

The SMILES format file of substrate 2-HE(MHET)_4 and protein

embedding from the ESM2 model (esm2_t36_3B_UR50D)47 are

used as input to perform molecular docking via DiffDock. The

parameters are as follows: inference_steps = 20, samples_

per_complex = 40, batch_size = 10, actual_steps = 18 and no_

final_step_noise. Based on confidence score, the top-1 predic-

tion ligand pose is selected as the optimal binding structure.

To identify potential sites for mutation, considering the spatial

relationship between the ligand and the enzyme, a specific dis-

tance is established for the unknown active site, such as the

Euclidean distance of 10 Å. The range of amino acids from the

substrate molecule or the top 50 or top 70 amino acids closest

to the active site of the enzyme, based on Cα distance, are

then selected as candidate sites for mutation, excluding the

active sites. Subsequently, the selection of candidate sites and

the type of amino acid will be determined through a GNN.

GVP-based GNN

We employed GVP-GNN,48 leveraging the advantages of GNNs

and CNNs. GVP-GNN replaces dense layers with GVPs within a

GNN, predicting the distribution of amino acid types on the

protein sequence based on the residue’s chemical and topolog-

ical environment by exchanging information with neighboring

residues.

In the GVP-GNN framework, a protein structure is represented

as a proximity graph with vertices and edges extracted from 3D

backbone atoms. Both vertices and edges contain scalar and

vector features. In detail, each vertex that expresses a residue’s

attributes has embedding with the following features.

(1) Scalar features{sin,cos}∘{ϕ,ψ,ω}, where ϕ, ψ, and ω are

the dihedral angles computed from Ci − 1; Ni; Cαi
; Ci;

and Ni + 1.

(2) The forward and reverse unit vectors in directions of

Cαi + 1
− Cαi

and Cαi − 1
− Cαi

, respectively.

(3) The unit vector in the imputed direction of Cβi
− Cαi

.

(4) A one-hot representation of amino acid identity.

Each edge that expresses the relationship between two resi-

dues has embedding with the following features.

(1) The unit vector in the direction of Cαj
− Cαi

.

(2) The encoding of the distance ‖C_(α_j)− C_(α_i)‖2 in terms

of Gaussian radial basis functions.

(3) A sinusoidal encoding of j − i, which represents distance

along the backbone.

Additionally, we introduce the isoelectric point (pI) as a vital

amino acid attribute. All features are concatenated and passed

to a GVP layer to obtain an initial input graph. Subsequently,

GVP-GNN utilizes message passing to update each vertex’s em-

beddings based on messages from neighboring vertices and

edges. The output graph, derived from message-passing layers,

provides a refined vertex representation, which is further pro-

cessed through a GVP layer and a SoftMax layer for multi-class

classification, resulting in the probability distribution of the 20

standard amino acids across all positions.

To further balance model generalization and biological inter-

pretability, we restricted our training and evaluation to well-

curated enzyme domains. Specifically, we adopted the prepro-

cessed CATH 4.2 dataset released by Townshend et al.49 This

dataset has been widely used for benchmarking structure-aware

learning models, enabling direct comparison with prior studies.

For each enzyme, residues were mapped to their correspond-

ing 3D coordinates, and the catalytic center was defined based

on known active-site annotations or bound ligand positions

when available. Residues within a defined spatial radius

(typically 8–12 Å) from the active-site centroid were retained as

the mutationally tractable region. This heuristic reduces compu-

tational complexity while prioritizing positions most likely to

modulate catalytic efficiency or substrate recognition. To ensure

robustness, residues in flexible loops adjacent to the active site

were also considered when sufficient structural confidence

scores were available. We acknowledge that our approach

does not capture all potential long-range effects, and the rela-

tively modest improvement observed for the BsEst scaffold

may partly reflect scaffold-specific constraints and dataset bias.

We retrained the GVP-GNN with the CATH data, following the

structural split methodology in previous work: learning rate =

0.001, betas = (0.9, 0.999); training 40 epochs, save best model.

The training dataset for our GVP-GNN model was derived from

CATH v.4.2, the widely used structural classification database

for protein domains. To ensure consistency with previous

work, we followed the same dataset preparation and train-test

splitting strategy used in the original GVP paper, including

sequence identity thresholds and structural redundancy filtering

to reduce overfitting.

During model training, we used the Adam optimizer with a

mini-batch size of 3,000 amino acid residues. The model was

trained to minimize the cross-entropy loss over the 20 standard

amino acid classes at each residue position. We explored the hy-

perparameter space through 50 independent trials with the

following settings. Learning rate: log-sampled between 1e− 5

and 5e− 4; dropout rate: uniformly sampled between 0.05 and
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0.5; epochs: 40 maximum, with early stopping if validation loss

plateaued (<1% improvement across 5 epochs). The optimal

configuration was identified as: learning rate: 0.001; dropout

rate: 0.1; β1 and β2: default Adam values.

This setup achieved optimal generalization on a held-out vali-

dation subset of the CATH 4.2 dataset.

According to the GVP results, there could be a potential variant

when the difference between the original type of amino acid and

the predicted type with the highest probability of amino acid takes

place in one site. Because of the impossibility of validating all

variants, the variants that are around the active site or ligand

can be selected as experimental candidates. FAST-PETase and

DepoPETase share identical active sites (S134/D180/H211).

Despite having the same top-50 distance closed candidates,

they exhibit distinct GVP results. Consequently, for both enzymes,

we selected the ten closest substitutions to the active site for

experimentation. In the case of BsEst, which features top 70 sub-

stitutions closest to the active site (S189/E310/H399), we chose

the 20 substitutions nearest to the active site based on GVP

results. We note that the distance-to-active-site threshold was

chosen as a pragmatic heuristic to focus mutational exploration

on residues most likely to impact activity. While this choice inevi-

tably constrains the search space and does not guarantee a linear

relationship with functional changes, it provided a cost-effective

strategy under experimental capacity limits.

Fine-tuning the ESM2 model with homologous protein

data

Based on the known PETase and BHETase, the hhblits tool helps

grab 28,397 sequences with parameters n = 3, B = 100,000, and

cpu = 16. According to the principle of Devlin et al.,50 we fine-

tune the ESM2 model as follows.

(1) 10% of the amino acids are masked.

(2) In 80% of the cases, the masked amino acids are re-

placed by <mask>.

(3) In 10% of the cases, the masked amino acids are re-

placed by a random amino acid (different) from the one

they replace.

(4)In the remaining 10% of cases, the masked amino acids

are left as is. Maximum steps = 5,000, learning rate is 1e− 4,

optimization is a factor 8 V100, 5 days.

Following the fine-tuning of the ESM2 model, we employ it for

the design of BHETase (BsEst). Once the embedding of BsEst is

obtained, we utilize both the learn2learn model and the Gaussian

process regression (GPR) model to predict variants for the next

round.

learn2learn model

In this study, we employed the MAML algorithm51 to discern uni-

versal catalytic activity knowledge across various temperature

conditions and then transfer this knowledge for robust predic-

tions under new conditions. During the initial experimental round,

catalytic activity measurements were obtained at multiple tem-

peratures, and the data were subsequently partitioned into sup-

port data and query data.

Recognizing the challenge of identifying substitutions with sig-

nificant catalytic efficiency based on limited samples, our focus

shifted toward achieving enhanced performance using machine-

learning techniques, specifically those falling under the umbrella

of ‘‘learning to rank.’’ This approach encompasses listwise

methods, where a ranking function is learned by treating individ-

ual lists as instances and minimizing a loss function defined on

the predicted list against the ground-truth list. One such listwise

method employed in our study is ListMLE, which formalizes

learning to rank as a problem of minimizing the likelihood loss

function. This method has demonstrated superior properties

and yielded improved experimental results on benchmark data-

sets. The loss function is defined as follows:

L({y}; {s}) = − log
(
P
(
πy|s

))
;

where P(πy|s) is the Plackett-Luce probability of a permutation πy

conditioned on scores s. Here, πy represents a permutation of

items ordered by the relevance labels y where ties are broken

randomly. In the MAML network, we used three multi-layer

perceptrons.

GPR model

The GPRs52 are defined over our parameter space, the set of all

combinations of embedding that obtained from fine-tuned ESM2

model, as linear combinations of kernel functions. The kernel

functions depend on hyperparameters, most often correlation

length scales and signal variances. The GPR model can be

trained and conditioned on the experimental data, resulting in

an acquisition function that can be passed to an optimizer to

find the optimal next measurement outcome.

Defining a GPR model from data D = {(x1,y1),…,(xN,yN)}, where

xi ∈ Rn, n = 1,280, and yi = f(xi) + ϵ(xi), is accomplished in a

Bayesian framework by placing a Gaussian probability density

function:

p(f) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)N
|K|

√ exp

[

−
1

2
(f − μ)T

K
− 1

(f − μ)
]

;

called the prior, over a function space, and condition it on the

data. μ = [μ(x1); :::; μ(xN)]
T

is the mean of the prior Gaussian

probability density function, f = [f(x1); :::; f(xN)]
T
; Kij = k(ϕ,xi,xj)

is the covariance function or kernel, where ϕis a set of hyper-

parameters, commonly length scales l and signal variance σ2
s .

For this study, we used a combination kernel of Dot-product

and White. The Dot-product kernel is given by

k
(
xi; xj

)
= σ2

s + xi ⋅ xj;where σ2
s = 1:0:

With σ2
s = 1, the kernel function exhibits a bias term at

the origin, making it a nonhomogeneous linear kernel. The

nonhomogeneous linear kernel can handle linear relationships

beyond those passing through the origin, adding flexibility to

the model.

The White kernel is given by

k
(
xi; xj

)
=

{
1:0; if xi = xj;

0; if xi ∕= xj :
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Meta-learning framework and model architecture

In the meta-learning phase (round II), we implemented a model-

agnostic framework using the learn2learn library to enable rapid

adaptation from limited training data.53 Each training episode con-

sisted of randomly sampled enzyme-specific tasks that were split

into support and query subsets (typically at a 3:1 ratio). Meta-

batches were constructed by combining multiple episodes to

ensure balanced gradient updates and mitigate task-level bias.

The underlying base model was a two-layer fully connected

neural network that mapped 1,280-dimensional ESM2 embed-

dings to a scalar stability score. The model was optimized using

the ListMLE loss function, which directly optimizes ranking con-

sistency between predicted and experimentally observed stabil-

ity, thereby emphasizing the identification of beneficial variants

rather than minimizing mean-square error as in conventional

regression. Model parameters were updated using meta-gradi-

ents derived across tasks through stochastic gradient descent

with an adaptive learning rate (1e− 4).

To improve generalization, the feature encoder weights from

ESM2 were frozen during meta-training, while task-specific

adaptation occurred through the final regression layers. Each

meta-epoch comprised 50–100 episodes, and convergence

was typically achieved after 30–40 epochs. The Gaussian pro-

cess baseline was trained independently on the same embed-

ding features using a Dot-product + White kernel for computa-

tional efficiency in high-dimensional space (n = 1,280).

Collectively, this framework differs from conventional regres-

sion pipelines by enabling task-level learning dynamics—that is,

the model learns to rank variants effectively across heterogeneous

sequence-function relationships and to generalize from sparse

supervision. The design allows the identification of promising var-

iants even in low-data regimes where standard regression or

evolutionary models such as EvMutation may underperform.

Quantitative assessment of the efficiency of two-

enzyme systems by imaging technique

Imaging techniques were employed to establish a quantitative

assessment of the efficiency of the two-enzyme system.

Taking the example of a two-enzyme system coupled with

DepoPETase, we initially obtained SEM images of PET film pro-

cessed through the system for 48 h. These included the control im-

age (PET film), the DepoPETase (single-enzyme system) catalyzed

image, the DepoPETase/BsEst (two-enzyme system) catalyzed

image, and the Depo-S181Y/BsEst-Y109R (two-enzyme system)

catalyzed image (Figures 5G and 5H). After removal of watermarks,

we calculated the difference between the experimental images

and control images, respectively. In the control group, the SEM

image has a smooth surface with minimal brighter pixel dots.

As the PET film underwent erosion by single-/two-enzyme sys-

tems, the PET film surface became rougher, evident in the images

by the emergence of bright pixels. The intensity of the pixel bright-

ness correlated with the roughness of the membrane surface and

the catalytic capacity under identical reaction conditions.

Subsequently, the SNR was calculated using the formula

SNR =
μsig

σsig

;

which is defined as the ratio of the average image signal

value μsig to the standard deviation of the image signal σsig.

A higher SNR value indicates superior image quality, reflect-

ing a higher mean value of the image signal, more bright

spots, and a rougher surface of the PET film. Simultaneously,

a smaller variance in the image signal signifies less fluctuation

in signal data, indicating greater consistency in image signal

values.

Molecular docking and MD simulation

Given that the crystal structure of PETase is known (PDB:

6EQE), we used it as a reliable template for predicting the struc-

tures of the FAST-PETase and DepoPETase variants with

AlphaFold 2, which resulted in high prediction accuracy.54

Representative structure was then used for further molecular

docking. A previously reported model substrate including

4PET and BHET was used.33,55 Molecular docking was per-

formed using AutoDock Tools 1.5.6.56 The predicted catalytic

residues were used to define the binding pocket, and clustering

analysis of the output results was conducted by AutoDock us-

ing criteria such as energy minimization and cluster size. The

energetically favorable poses of ligands binding to the targeted

sites of enzymes were extracted and analyzed. After yielding

the final docked binding mode, MD simulation and analysis

were performed with the GROMACS 2016 simulation package

with the GROMOS96 (54a7) force field. Docking conformations

and topology files of substrates 4PET, BHET, and intermediates

BHET, MHET, EG, and TPA were obtained from the ATB web-

site (http://atb.uq.edu.au/index.py). The docking conformation

and topology files of FAST-PETase, FAST-Y61Q-PETase,

DepoPETase, and Depo-S181Y-PETase maintained the

docked conformation with 4PET in the simulated system, and

the intermediates BHET, MHET, EG, and TPA molecules were

randomly inserted into the system. BsEst, Bs-Y109R, and Bs-

L465V maintained the docked conformation with BHET in the

simulated system. A total of 42 simulated reactions at 303 K

and 333 K after docking with substrates were performed in

the system for the two types of proteins PETase and BsEst,

respectively. The proteins, substrates, and intermediates

were first placed in a cubic box with a minimum distance of

12 Å from the edge of the box to the proteins, and the box

was next filled with water molecular model simple point charge

extended (SPCE). To equilibrate the system, Na+ and Cl− were

added for net charge neutralization. To avoid unfavorable inter-

actions, energy minimization was performed using the steepest

descent method prior to MD simulations, followed by 100 ps

canonical ensemble treatments (NVT) at 303 K and 333 K,

then 100 ps constant-pressure, constant-temperature treat-

ments (NPT), and finally running the simulations (100 ns at

303 K/333 K, 1 bar, and 2 fs time step). To avoid experimental

chance introduced by a single simulation, we used three

simulations with different starting atomic velocities as parallel

controls. During the simulations, the energy, coordinates, and

velocity were recorded at 0.5 ns intervals, and the trajectories

were visualized and analyzed with PyMOL 2.5.2 and

VMD 1.9.3; all analyses were finally calculated using the

GROMACS simulation packaging tool.
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