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SUMMARY

The identification and design of efficient biocatalysts to address plastic waste accumulation are pressing
global challenges. Leveraging recent advancements in artificial intelligence (Al), we developed an integrated
machine-learning framework incorporating the geometric vector perceptron-graph neural network and
learn2learn models to yield robust and thermostable variants based on three representative polyethylene
terephthalate hydrolases (i.e., FAST-PETase, DepoPETase, and BHETase). The engineered hydrolase vari-
ants demonstrated up to a 5.5-fold improvement in hydrolytic activity across a temperature range of
40°C-70°C compared to the wild-type enzymes. Molecular dynamics simulations revealed key microenviron-
mental interactions sustaining hydrolytic activity at high temperatures—enhanced hydrogen bonding and
hydrophobic interactions around active sites—and highlighted the unbound dynamics of bis(2-hydroxyethyl)
terephthalate and mono-(2-hydroxyethyl) terephthalate near catalytic sites, motivating a two-enzyme system
that achieved a 1.5-fold increase in terephthalic acid production. This study demonstrates a scalable Al-

guided strategy for evolving robust polyethylene terephthalate hydrolases for industrial biodegradation.

INTRODUCTION

Among the petroleum-based plastics, polyethylene tere-
phthalate (PET) is one of the most widely produced synthetic
polymers, with a global manufacturing capacity exceeding 30
million tons annually. The extensive use of PET in packaging
and textiles, combined with its recalcitrant nature, has led to
pressing challenges in plastic waste management and environ-
mental pollution. Although considerable progress has been
made in developing biodegradable plastics,’™ their market
presence remains limited compared to conventional nondegrad-
able plastics.”*® Meanwhile, enzymatic PET degradation has
also been intensively studied using engineered hydrolases,
some of which have demonstrated activity at preparative or
industrially relevant scales.”~'? Given these limitations, biological
recycling through enzymatic PET hydrolysis has garnered signif-
icant interest, and various PET hydrolases, including /sPETase, ®
Tfh,'* leaf-branch compost cutinase (LCC),'® Thc_Cuti1,'®
Thh_Est,"” and Hic,'® have been biochemically and structurally
characterized as potential candidates for PET depolymerization.

Efforts to enhance the efficiency and thermostability of PET
hydrolases have led to notable breakthroughs by protein engi-

neering campaigns.”®'°?" In 2020, an engineered variant of
LCC (LCC-ICCG) demonstrated 90% depolymerization of pre-
treated PET waste at high PET concentrations (200 g kg™"),"?
and recent works have extended PETase and LCC variants to
gram-scale or continuous processes.””'? Further advancements
were achieved with DepoPETase, a highly engineered IsPETase
variant (T88I/D186H/D220N/N233K/N246D/R260Y/S290P) pro-
duced via directed evolution, capable of depolymerizing un-
treated PET wastes in a liter-scale reactor (0.4% Wenzyme/
Weer).2° Both LCC-ICCG and DepoPETase present robust scaf-
fold candidates for further engineering aimed at enhancing ther-
mostability and catalytic activity across variable temperature
ranges.

Recent advancements in computational redesign have paved
the way for significant progress in enzyme engineering.”
Leveraging machine-learning (ML) and mutagenesis technolo-
gies has enabled the rapid and cost-effective exploration of pro-
tein structures and functions. Through large-scale biological
data processing, deep-learning algorithms can decipher com-
plex protein sequence and structural data, effectively predicting
beneficial variants.”> For instance, the evolutionary scale
modeling (ESM)-1v protein language model developed by
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Facebook Al, based on Transformer architecture, allows for un-
supervised learning from vast protein sequence data, predicting
variants that outperform the wild type in stability or activity.**
ML-guided enzyme engineering circumvents some limitations
of directed evolution, such as high screening costs and
extended experimental cycles, by directly providing high-confi-
dence predictions on enzyme modifications. Recent studies,
including those by Alper’s group’ using MutCompute and by
Hu et al.?® using Bayesian optimization, have demonstrated
the efficacy of ML in identifying variants with enhanced activity
and stability through targeted predictions. Alper’s team used
MutCompute, a structure-based convolutional neural network
(CNN), to a stabilizing five-site variant (FAST-PETase, N233K/
R224Q/S121E/D186H/R280A) that exhibited superior PET-hy-
drolytic activity between 30°C and 50°C and a range of pH
levels.” Besides this, Hu et al.”® used Bayesian optimization to
guide directed evolution, combining the sampling process with
iterative optimization of the proxy model, and successfully ob-
tained a four-site RhIA variant that could increase the product
selectivity by 4.8-fold after four rounds of iterations. These devel-
opments underscore the emerging trend of digital protein design
in synthetic biology.*®

However, challenges remain in designing PET hydrolases
through ML, primarily due to the complexity of balancing enzyme
thermostability, catalytic efficiency, and substrate affinity.’*"®
Current ML strategies often focus on limited functional metrics
(such as activity or stability), overlooking the potential trade-
offs in evolving enzymes with optimal functionality across
diverse and often conflicting properties.?®° Additionally, exist-
ing models are typically optimized based on available datasets
with limited diversity, leading to predictions that may not gener-
alize well to novel enzyme scaffolds. Consequently, the predic-
tive power for functional and stable PET hydrolase variants
that operate effectively at high temperatures remains con-
strained. To address these issues, this study presents a multi-
tiered ML strategy that combines a geometric vector perceptron
(GVP)-graph neural network (GNN) model with iterative meta-
learning refinement through Gaussian and learn2learn models.
The two-round approach allows for a broader exploration of
mutational landscapes in the initial stage, followed by targeted
refinement based on the identified “best” variants (Figure 1A).
This strategy addresses several challenges in enzyme design,
including (1) achieving a more comprehensive search of func-
tional variants, (2) balancing thermostability with catalytic perfor-
mance, and (3) accommodating diverse structural scaffolds of
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PET hydrolases. Additionally, we introduce an in silico scoring
criterion to evaluate enzyme robustness comprehensively and
systematically across different substitutions. Using molecular
dynamics (MD) simulations (Figure 1A), we also investigated
PET degradation to elucidate the mechanisms underlying hydro-
lytic activity at elevated temperatures and the microbehavior of
intermediates (bis-2-hydroxyethyl terephthalate [BHET] and
mono-2-hydroxyethyl terephthalate [MHET]). This alignment of
in vitro and in silico studies not only underscores the utility of
computational strategies in enzyme engineering but also high-
lights the importance of a two-enzyme system for efficiently pro-
ducing the terminal product, terephthalic acid (TPA), thereby
contributing to a sustainable solution for PET waste recycling.

RESULTS AND DISCUSSION

Development of a deep-learning framework for
engineering PET hydrolases

In this study, we applied deep-learning techniques, specifically
graph learning and meta-learning, aiming to narrow the candi-
date variant space and focus on residues at the enzyme-sub-
strate interaction interface. The effectiveness of this comprehen-
sive framework was validated on three representative protein
scaffolds of PET hydrolases (two PETases: FAST-PETase and
DepoPETase; and a BHETase: BsEst), the latter serving as a
critical catalyst in PET biodepolymerization. In the first phase,
we employed the optimized (GVP-GNN) model. This model en-
hances the ability to learn geometric relationships between no-
des by incorporating geometric vector representations into the
GNN framework. Each amino acid is treated as a node in
the graph, with edges representing interactions between resi-
dues. To better capture spatial structure, dihedral angles, elec-
trostatic charges, and other microenvironmental properties, we
augmented node features with amino acid isoelectric point (pl)
information®" (Figure 1B). We assigned the pl value of each
amino acid residue using its theoretical value derived from the
Bjellqvist pK, scale,®* as retrieved from publicly available
biochemical databases. These standard values were uniformly
applied across all residues to maintain computational efficiency.
We acknowledge that fixed pl values cannot fully represent
charge rearrangements occurring during substrate interactions.
This approximation was selected to ensure computational
efficiency, while more rigorous treatments would require signifi-
cantly greater computational resources. Each pl value was en-
coded as a scalar node feature and integrated with other

Figure 1. Graph-learning- and meta-learning-guided two-round predictions improve enzyme performance

(A) Workflow of enzyme performance improvement. GVP-GNN was adapted to predict mutants by assessing the difference between the original type of amino
acid and the predicted type with the highest probability at a given site. Mutants closer to the active site or ligand (after docking) were more likely to be selected as
experimental candidates. Based on the results of the first-round experiments, meta-learning was utilized to predict second-round mutants. Subsequently,
molecular dynamics (MD) simulation was employed to understand the microscopic mechanism.

(B) Structural features and pl are input into a graph following transformations by GVP layers. The input graph undergoes further transformation through message-
passing layers, influencing the embedding of residues based on their neighboring node and edge embedding. Finally, the node embeddings from the output
graph are employed for mutant prediction, relying on probability and undergoing another GVP transformation.

(C) The embedding, derived from a fine-tuned ESM2 model and first-round experimental data, is divided into support and query sets denoted as X and Y,
respectively. The following steps are repeated for all episodes of the meta-training dataset until the learner converges to a good set of meta-parameters: (1)
sample a batch of episodes from the meta-training dataset; (2) train the adapter based on the support sets of the batch, compute the listwise loss and gradients,
and update the adapter’s parameters; (3) use the updated parameters of the adapter to compute the meta-loss based on the query sets of the batch; and (4)
compute the meta-gradients, followed by the meta-parameters based on the meta-loss, and update the learner’s parameters.
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Figure 2. Machine-learning-guided predictions improve enzyme performance across AST-PETase, DepoPETase, and BsEst scaffolds

(A) Biodegradation mechanisms of PET. PET, polyethylene terephthalate; TPA, terephthalic acid; EG, ethylene glycol; BHET, bis-2-hydroxyethyl terephthalate;
MHET, mono-2-hydroxyethyl terephthalate.

(B-D) Top 20 substitutions are distributed in the (B) FAST-PETase, (C) DepoPETase, and (D) BsEst protein structure by machine learning.

(E) The blue heatmap (left) shows the PET-hydrolytic activity of the resulting variants, and the histogram (right) shows the fold change of activity over FAST-
PETase and DepoPETase scaffolds. The total PET monomers (the sum of TPA, MHET, and BHET) were released from hydrolyzing circular gf-PET film
(6-mm-diameter pieces, roughly 67 mg) after 120 h of incubation at temperature ranging from 40°C to 70°C. Statistical normative scores calculated by assigning
weights of 10%, 20%, 30%, and 40% to the TPA yield under 40°C, 50°C, 60°C, and 70°C, respectively.

(legend continued on next page)
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physicochemical properties as input to the GVP-GNN, enabling
better representation of local electrostatic environments relevant
to thermostability and catalysis. The microenvironment of the
protein, including backbone and pl information, was concate-
nated and fed as input features to the GVP layer, forming the
initial input graph. Using a message-passing mechanism, nodes
iteratively updated their feature representations by interacting
with their neighbors, allowing the model to capture complex in-
terdependencies among residues. The final output predicted
the probability distribution of 20 possible amino acids for each
site. Additionally, we integrated predicted variant probabilities
with spatial information, such as the distance between candidate
residues and the specific substrate molecule. This combined
analysis allowed us to select the top ten candidates for experi-
mental validation. We note that ML models may exhibit predic-
tion bias (over- or underestimation) in absolute activity values.
In this work, the models were primarily used for relative ranking
of variants, with experimental assays providing validation and
feedback for iterative refinement in the design-test-learn cycle.

In the second phase, we employed a meta-learning strategy,
which excels in handling small-sample data compared to tradi-
tional methods like learn2learn and Gaussian processes. For
BsEst, experimental data at multiple temperatures were treated
as separate tasks, each containing a support set and a query set.
A pretrained protein language model based ESM2 was utilized
for meta-learning to better fit enzyme activity data with limited
samples. In detail, to enhance the sequence embedding of
BsEst, we used hhblits to retrieve homologous sequences and
fine-tuned the protein language model ESM2 using this
sequence set. The fine-tuned ESM2 embeddings were then
divided into support and query sets for model diagnosis through
meta-learning using the model-agnostic meta-learning (MAML)
framework (Figure 1C). Our meta-learning strategy currently re-
lies solely on sequence embedding (ESM2), which may limit
cold-start performance. Future work integrating structural or
phylogenetic features could further enhance predictive accuracy
and broaden applicability.

GVP-GNN model to predict the round I variants for
enhancing thermostability toward three PET hydrolases
with two types of protein scaffolds

The highly focused protein engineering approaches usually
cannot consider the evolutionary trade-off between overall sta-
bility and activity, and the last few years have witnessed impres-
sive progress in tailoring natural enzymes by computational
redesign strategies.”> Specifically, the engineered FAST-
PETase through CNN’ and DepoPETase”° by directed evolution
showed marvelous capability in hydrolyzing PET into monomers
(including BHET, MHET, TPA, and ethylene glycol [EG]) at high
temperature (50°C-60°C, Figure 2A). Additionally, our previous
study identified BHETase, which catalyzes the conversion of
the intermediate product BHET into the terminal monomer TPA
(Figure 2A). Based on these two promising PETase scaffolds
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(FAST-PETase and DepoPETase) and one BHETase scaffold
(BsEst), we first employed the refined GVP-GNN model to further
predict their extra tailorable positions (Figures 2B-2D). Discrete
probability distributions for all 20 standard amino acids at each
position across the three protein scaffolds were generated,
effectively conducting an in silico integrated mutagenesis scan.
The predictions were ranked based on their probabilities, and
the top ten site distributions were illustrated on the 3D structure
of the protein to identify locations where the wild-type amino
acid residues poorly matched potential substitutions
(Figures 2B-2D). We subsequently evaluated PET-hydrolytic ac-
tivity of these variants across a range of temperatures from 40°C
to 70°C using an amorphous PET film (gf-PET, from the supplier
Goodfellow).>* An in silico scoring criterion was introduced to
comprehensively assess the robustness of these variants
(Figures 2E and 2F). For each variant, we quantified TPA produc-
tion at four representative temperatures (40°C, 50°C, 60°C, and
70°C for FAST-PETase and DepoPETase). A normalized score
was then calculated as a weighted sum of TPA concentrations
using the formula

Normalized score = (C49 x 10%) + (Csg x 20%) + (Ceg x 30%) +
(Cro x 40%),

where C, denotes the TPA concentration (mM) at temperature x.
This weighting reflects the greater relevance of high-temperature
activity inindustrial PET degradation. A similar strategy was used
for BHETase variants, evaluated across 30°C-60°C.

Overall, the beneficial rate is ranging from 20% to 75% under a
range of investigated temperatures from 40°C to 70°C
(Figure 2E, top). Among the predicted top ten variants, FAST-
Y61Q demonstrated a 1.9-fold and 4.9-fold increase in PET-hy-
drolytic products at 60°C and 70°C, respectively. Aligning with
the in silico scoring criteria, FAST-Y61Q (score: 4.32) signifi-
cantly outperformed the FAST-PETase scaffold (score: 2.17).
Variants based on the DepoPETase scaffold exhibited an
extended operational temperature range of 40°C-70°C, which
was generally higher than that of the FAST-PETase scaffold var-
iants (Figures 2E and S1A). The best-performing variant from the
DepoPETase scaffold was DepoPETase-S181Y, which achieved
normalized scores of 4.27, resulting in 1.6-fold and 4.9-fold
higher activity at 50°C and 60°C, respectively. The crude en-
zymes of FAST-Y61Q and DepoPETase-S181Y showed the
highest overall degradation of all variants, and temperatures
tested at 50°C and 60°C released 7.63 mM and 9.56 mM PET
monomers (the sum of BHET, MHET, and TPA), respectively,
over 96 h (Figure 2E). In addition, the reaction progression pro-
files of both FAST-Y61Q and Depo-S181Y were monitored at
60°C (Figures S1C and S1D). To thoroughly evaluate the catalytic
adaptation of the variant enzymes under varying environmental
conditions, FAST-Y61Q, Depo-S181Y, and their respective pro-
tein scaffolds were assessed across a pH range of 5.5-8.5 using
amorphous gf-PET (Figure S2). These results underscore that
GVP-GNN-guided predictions significantly enhanced enzyme

(F) The blue heatmap (left) shows the terminal TPA production of the resulting variants, and the histogram (right) shows the fold change of activity over the BsEst
scaffold. TPA production released from hydrolyzing 5 mM BHET by the BsEst variants after 6 h of incubation at temperature ranging from 30°C to 60°C. Statistical
normative scores calculated by assigning weights of 10%, 20%, 30%, and 40% to the TPA yield under 30°C, 40°C, 50°C, and 60°C, respectively.

All measurements were conducted in triplicate (n = 3), and the mean values were used for generating heatmaps and histograms.
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activity while extending the operational temperature and pH
range across all scaffolds. To benchmark the performance of
our designed enzymes, we compared the representative variants
FAST-Y61Q and DepoPETase-S181Y with the state-of-the-art
TurboPETase and HotPETase under identical conditions. As
shown in Figure S4, both variants exhibited comparably higher
TPA release after 48 h, demonstrating that our ML-guided design
can generate competitive or superior PET-degrading enzymes
relative to existing high-performance PETases.

Next, we sought to investigate the generalizability of our GVP-
GNN method by investigating another protein scaffold,
BHETase. Although the beneficial rate ranges from 5% to 45%
regarding the investigated temperatures (Figure 2F, top), the
top ten BsEst variants identified by the GVP-GNN model showed
no significant enhancement in catalytic activity at temperatures
ranging from 30°C to 60°C. The L110A variant, which had the
highest normalized score (1.74), only achieved a 1.2-fold in-
crease compared to wild-type BsEst (1.45). While L110A pro-
duced 1.5-fold increased TPA at 60°C and demonstrated the
highest TPA production at 30°C and 50°C, this performance
was still below our expectations. Subsequently, we expanded
the recommended range of the GVP-GNN model to include the
top 20 variants, finding that the next ten variants had significantly
lower comprehensive scores than the top ten (Figure 2F). Given
these results, we prioritized further optimization of BsEst through
the meta-learning strategy (Gaussian model and learn2learn) to
enhance its performance. This decision allowed us to efficiently
allocate experimental resources to the scaffold that most
required improvement while also demonstrating the adaptability
and complementarity of the two-round ML strategy.

Meta-learning was used for round Il predictions to
identify extra robust BHETase variants

Based on the experimental results from round I, where the GVP-
GNN model recommended the top 20 variants, we employed
meta-learning with both the Gaussian model and the learn2learn
model to fit the respective experimental results in Figure 2. We
then evaluated the hydrolytic activity of BHET at temperatures
ranging from 30°C to 60°C for the top ten variants recommended
from each model, as illustrated in Figures 3B and 3C. Notably,
Figure 3D demonstrates that the number of beneficial variants
identified in round Il using the Gaussian model and the learn2-
learn model significantly exceeded those identified in round |
with the GVP model. Among these variants, the BsEst L465V,
which achieved a normalized score of 1.97 from the Gaussian
model, exhibited a 3.1-fold increase in terminal product TPA
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compared to the wild type at 60°C. Meanwhile, the BsEst
Y109R variant, which received the highest score of 2.69 from
the learn2learn model, surpassed the wild-type BsEst score of
1.45. Interestingly, Y109R demonstrated superior activity across
a range of temperatures (30°C-60°C), with a TPA yield that was
5.5-fold greater than that of the wild type at 60°C.

Encouraged by these promising results, we monitored the
BHET hydrolysis progress at a high temperature of 60°C using
the purified Y109R and L465V variants. As depicted in
Figures 3H and S3, both variants achieved complete conversion
of BHET within 9 h and 100% TPA yield within 12 h. Notably, the
rate of TPA production by Y109R (0.5 mM/h) was higher than that
of L465V (0.35 mM/h).

Next, we compared three state-of-the-art ML algorithms—
ESM-1V,?* EvMutation,®* and DeepSequence®® —with the algo-
rithms used in this study (Figures 3E-3G). Since we explored only
10-40 variants for each enzyme, and BsEst Y109R and FAST-
Y61Q consistently ranked among the top three predicted vari-
ants, we focused our efforts on experimentally validating the
top three variants identified by three state-of-the-art ML algo-
rithms. It should be noted that comparisons with other models
were limited to the top three predictions due to experimental
cost constraints and thus were intended to provide context
rather than to establish rigorous performance ranking. Collec-
tively, the number of beneficial variants at medium temperatures
(30°C-50°C) was notably higher than at high temperatures
(60°C-70°C). To systematically identify beneficial variants, we
assigned varied weights (10%, 20%, 30%, and 40%) to gradient
temperatures and tallied the optimal variant scores from each
algorithmic model (Figure 3l). In round Il, the meta-learning strat-
egy leveraged episodic sampling and a ranking-based loss
(ListMLE) to prioritize stable BHETase variants from limited
training data, distinguishing it from conventional regression-
based approaches. Our method systematically identified supe-
rior beneficial variant scores across all models, outperforming
ESM-1V, EvMutation, and DeepSequence, particularly for
BHETase (Figure 3l). While our framework generally outper-
formed baseline models, we note that EvMutation achieved
comparable or superior predictions in certain cases. This likely
reflects the strength of evolutionary constraints embedded in Ev-
Mutation, which are especially informative for mutations occur-
ring at highly conserved positions.** These results collectively
demonstrate that the ML approach proposed in this study, com-
bined with in silico scoring criteria, is most likely to address the
persistent challenges associated with engineering robust PET
hydrolases. Owing to the dense molecular packing and limited

Figure 3. Machine-learning-guided predictions improve enzyme performance across BsEst scaffolds
(A-C) (A) Biodegradation mechanisms of BHET. Top ten substitutions are distributed in the wild-type BsEst protein structure by (B) Gaussian model and

(C) learn2learn model.

(D) The blue heatmap (left) shows the terminal TPA production of the resulting variants, and the histogram (right) shows the fold change of activity over the BsEst
scaffold. TPA production released from hydrolyzing 5 mM BHET by the BsEst variants after 6 h of incubation at temperature ranging from 30°C to 60°C. Statistical
normative scores calculated by assigning weights of 10%, 20%, 30%, and 40% to the TPA yield under 30°C, 40°C, 50°C, and 60°C, respectively. All mea-
surements were conducted in triplicate (n = 3), and the mean values were used for generating heatmaps and histograms.

(E-G) Algorithmic comparison of ESM-1V model, EvMutation model, and DeepSequence model based on the (E) FAST-PETase, (F) DepoPETase, and (G) BsEst

scaffolds.

(H) Biodegradation performance of TPA production from BsEst upon incubation on BHET. Reaction conditions: 5 mM BHET at 30°C in buffer (pH 7.5) for 24 h.
Error bars correspond to the standard deviation (SD) of three measurements (n = 3).

(I) The highest-scoring variants were counted under four algorithms.
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Figure 4. Molecular insight into the overall structure of FAST-PETase and DepoPETase variants
(A) The time-averaged RMSD of the backbone atoms (C,, N, and carbonyl C) of the FAST-PETase, DepoPETase, and their variants with respect to the initial
structure at 30°C and 60°C, respectively, determined from the last 40 ns of MD simulation.
(B) The number of hydration shells of the FAST-PETase, DepoPETase, and their variants at 30°C and 60°C, respectively, during last 40 ns simulation from three
independent runs. The hydration shell was defined as water molecules whose oxygen atom was localized at a distance less than 3.5 A from any nonhydrogen

atom of the enzyme.
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chain mobility of highly crystalline PET, most PET hydrolases are
unable to efficiently catalyze depolymerization directly.®%*”
Complete degradation of high-crystallinity PET substrates,
therefore, typically requires additional chemical or physico-
chemical pretreatment steps—such as thermal annealing, me-
chanical milling, or solvent swelling—to increase polymer acces-
sibility and create more amorphous regions.>**° Integrating
such pretreatment strategies with the use of high-performance,
ML-screened enzyme variants offer a promising route toward
efficient and scalable PET recycling. The synergistic combina-
tion of substrate activation and catalyst optimization could sub-
stantially lower energetic barriers, enhance hydrolysis kinetics,
and enable the conversion of otherwise recalcitrant PET into its
monomeric building blocks under mild conditions. This integra-
tive approach not only bridges material and enzyme engineering
but also lays the groundwork for a closed-loop sustainable
plastic upcycling process.

Unraveling the structural basis for enhanced
thermostability

To investigate the effect of high temperature on enzyme activity,
we conducted MD simulations for wild-type FAST-PETase,
DepoPETase, BsEst, and their identified variants. This approach
allowed us to examine structural and solvation phenomena from
a molecular perspective (Figure 4). During the simulations, we
closely monitored the root-mean-square deviation (RMSD) and
root-mean-square fluctuation (RMSF) of the backbone atoms,
including C,, N, and carbonyl C, to assess thermal fluctuations
in protein conformation (Figures 4A, 4C, 4D, S5, and S8). The
RMSD values indicated that the four variants (FAST-Y61Q,
Depo-S181Y, BsEst-L465V, and BsEst-Y109R) exhibited mini-
mal changes of less than 0.3 ,&, even at 60°C (Figures 4A and
S5). Notably, FAST-Y61Q and Depo-S181Y displayed higher
RMSF fluctuations observed at the Y61 site of FAST-PETase
and the S181 site of DepoPETase (~1 A) but with similar RMSF
trends within substrate-binding cleft regions (Figures 4C and
4D). This observation correlated with a decrease in the number
of hydrogen bonds around these variant sites (Figures 4C and
4D). In proteins, hydrogen bonds are typically defined by a
hydrogen-acceptor distance of less than 2.5 A and a donor-
hydrogen-acceptor angle between 90° and 180°, which reflects
the most commonly accepted geometric criteria.”’ These results
suggest that substitutions at Y61 and S181 induce significant
structural fluctuations in localized regions but have a limited
impact on the overall enzyme structure, indicating that the cata-
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lytic function of the variants enables them to be maintained even
at elevated temperatures. The maintenance of a sufficient num-
ber of hydrogen bonds was evidenced by calculations of
numbers of internal hydrogen bonds in overall and local regions
along with a complex network of hydrogen-bonding interactions
around the substitution sites (Figures 4C, 4D, and S9-S11). The
latter plays a crucial role in preserving structural stability. Further
details regarding the structural analysis from the MD simulations
can be found in Figures S5-S11 and Note S1. In addition to
hydrogen-bonded stabilization, we analyzed the B factors of
the top variants (Figure S5) to evaluate residue flexibility. Several
sites, including FAST-Y61, FAST-S181, FAST-1182, FAST-A214,
and Depo-Y61, displayed relatively higher B-factor values,
implying increased local dynamics that may facilitate substrate
accommodation. These results indicate that our design strategy
balances thermal stability with catalytic adaptability, aligning
with the dual objective of enhancing both enzyme robustness
and activity toward plastic substrates.

Additionally, the solvation phenomena observed through MD
simulations clearly demonstrated the driving force behind the
enhanced degradation capacity observed between the model
substrates 4PET/BHET and their variants.*>** The hydration
shell—defined as water molecules with oxygen atoms located
within 3.5 A of any non-hydrogen atom of the enzyme®' —re-
mained largely unchanged in the four variants (FAST-Y61Q,
Depo-S181Y, BsEst-L465V, and BsEst-Y109R) compared to
their respective wild-type scaffolds (Figures 4B and S12). The
number of water molecules around the active sites of FAST-
Y61Q and Depo-S181Y (3.58 and 5.02) was significantly lower
than that of FAST-PETase and DepoPETase (6.47 and 8.06) at
30°C. Less space occupied by water molecules in the active
pocket facilitates the entry of the hydrophobic substrate 4PET/
BHET into the vicinity of the catalytic triad and promotes the hy-
drolysis reaction (Figures 4E and S14). These results are aligned
with the observed changes in the distance between the nucleo-
philic Ser and substrate 4PET over the 100 ns simulation period
within the catalytic triad (Figures 4F, S15, and S16). However, at
high temperature (60°C), the number of water molecules did not
show a significant difference, and the reaction distance ex-
hibited a corresponding result (Figure S14), suggesting that there
may be other reasons promoting the catalytic efficiency of the
variants, such as the conformational change of the active
pockets, and the main reason may be the enhanced thermosta-
bility of the overall structure of the variants analyzed above
(Figure 4A), which maintains its own activity. The increased

(C) RMSF of the wild-type FAST-PETase and FAST-Y61Q variant at 30°C and 60°C, respectively, determined from the last 40 ns of MD. The pink stick represents
the model substrate 4PET; the blue sphere represents the substitution of Y61; and the blue loop represents the regions of large fluctuations in RMSF values.
Hydrogen-bond network of FAST-PETase and FAST-Y61Q within 4.6 A around Y61. Residues within 4.6 A are presented as lines, Y61 is presented as a stick, and
both are colored blue.

(D) RMSF of the wild-type DepoPETase and Depo-S181Y variants at 30°C and 60°C, respectively, determined from the last 40 ns of MD. The pink stick represents
the model substrate 4PET; the green sphere represents the substitution of S181; the green loop represents the regions of large fluctuations in RMSF values.
Hydrogen-bond network of DepoPETase and Depo-S181Y within 3.55 Aaround S181. Residues within 3.55 A are presented as lines, S181 is presented as a stick,
and both are colored green. Data plotted from the average of three independent MD runs (n = 3).

(E) Number of water molecules around the active site (S134) of the FAST-PETase, DepoPETase, and their variants at 30°C and 60°C, respectively. The distance
around S134 was delineated as 6.6 A, which was predicted by the DEPTH server (http://cospi.iiserpune.ac.in/depth).** Error bars correspond to the SD of three
independent MD runs (n = 3).

(F) Distance curves of FAST-PETase, DepoPETase, and their variants between the hydroxyl oxygen atom (OG) of S134 and the carbonyl carbon atoms (C40) of
4PET at 100 ns simulation proceeding at 30°C.
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number of water molecules at the mutation sites could enhance
catalytic efficiency (Figure S14A). Collectively, the synergistic
effects of structural stability and catalytic capacity resulting
from the introduction of FAST-Y61Q and Depo-S181Y contribute
to an improved catalytic performance, especially at elevated
temperatures (60°C). A similar conclusion was also reached for
BsEst with the substrate BHET (Figures S5, S6B, S7C, S8,
S9B, S10-S13, S14B, and S16). To enhance the reliability of
the MD simulation data in this study, longer 1 ps MD simulations
were conducted under identical conditions, yielding comparable
results. Detailed analyses are provided in Note S1.

Construction of a two-enzyme system in PET
depolymerization guided by the molecular behaviors of
intermediates
In a recent study, Wang et al. employed high-level quantum me-
chanics/molecular mechanics (QM/MM) calculations, specif-
ically density functional theory (DFT), to accurately determine
reaction barriers and elucidate the catalytic mechanism of
PETase.”® PETase-catalyzed PET degradation involves four
steps: (1) nucleophilic attack triggered by Ser-His-Asp, (2) cleav-
age of the C-O bond, (3) nucleophilic attack by water molecule,
and (4) PETase deacylation. Notably, we observed that during
the C-O bond cleavage step (step 2) and the subsequent PETase
deacylation (step 4), intermediate products BHET and MHET are
released from the active site.*® This finding aligns well with the
composition of PET degradation products detected using high-
performance liquid chromatography (HPLC) as reported previ-
ously.*® Experimental observations revealed that PET hydrolase
(LCC) was predominantly collected from PET film rather than in
solution, suggesting a strong affinity of PET hydrolase for binding
to PET film.“®

Based on insights derived from both computational calcula-
tions and experimental data, we proposed the construction of a
dual-enzyme system to enhance the biodegradation of PET
(Figure 5A). Prior to implementing this system, spatial distribution
function (SDF) calculations were performed to analyze the
arrangement of water molecules in the BHET and MHET interme-
diates. Simulations over 100 ns indicated that BHET and MHET
remained solubilized, as evidenced by a significant decrease in
the number of surrounding water molecules (Figure S17). This
observation was further corroborated by the distances between
the intermediates (BHET and MHET) and the nucleophilic serine
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exceeding 10 A (Figures 5B and 5C). Furthermore, it was noted
that BHET and MHET faced challenges in accessing the catalytic
triad due to their positioning on the protein surface (Figure 5E),
and they were rapidly displaced from the enzyme surface when
model 4PET occupied the active site (Figure 5F). Given these
computational results, we decided to introduce BHETase (BsEst),
an enzyme responsible for converting intermediates into the ter-
minal product TPA, into the PETase single-enzyme system. The
incorporation of BHETase resulted in a significant 1.32-fold in-
crease in TPA yield compared to the single-enzyme system
(FAST-PETase and DepoPETase, Figures 5G and 5H). Further-
more, the integration of both PETase (FAST-Y61Q and Depo-
S181Y) and BHETase (Y109R), engineered through ML
algorithms, yielded a dual-enzyme system that produced homo-
geneous TPA with a 1.5-fold increase in yield. Notably, the rate of
TPA generation in this enhanced two-enzyme system was up to
1.9 times greater than that of the previous system, measured
over 48 h.

These findings were further substantiated by scanning elec-
tron microscopy (SEM) analysis and water contact angle mea-
surements, which together provided supportive evidence of sur-
face erosion and increased hydrophilicity of the PET films
(Figures 5G and 5H). While more detailed bulk analyses such
as size-exclusion chromatography or differential scanning
calorimetry could further characterize polymer degradation,
our current study focuses primarily on evaluating the catalytic
performance of the engineered enzymes. The observed morpho-
logical changes and surface wettability shift correlate well with
the enhanced TPA release, offering reliable indirect indicators
of enzyme-mediated depolymerization. Specifically, the two-
enzyme system demonstrated a remarkable capacity to effec-
tively degrade the PET film, resulting in a reduction of the water
contact angle by 25.6° and 21.7°, respectively, and producing a
visibly rougher surface. Additionally, calculations of the signal-
to-noise ratio (SNR) through image analysis revealed a correla-
tion with the amount of released TPA from both the single- and
two-enzyme systems (R? > 0.8, Figure 5D). This collective align-
ment of molecule-behavioral observations with experimental
data robustly supports the finding that the dual-enzyme system
plays a pivotal role in enhancing PET biodegradation. Nonethe-
less, further exploration of the quantitative relationships between
SEM characterization and degradation effects is warranted to
develop a novel evaluation system for PET degradation.

Figure 5. Two-enzyme degradation system including PETase and BHETase
(A) An overview of the two-enzyme degradation system. Icon graphics of this figure were created by BioRender.com.

(B) Average distances of FAST-PETase, DepoPETase, and their variants between the hydroxyl oxygen atom (OG) of S134 and the carbonyl carbon atom (C10) of
ten BHET molecules at 30°C and 60°C, respectively, during 100 ns of MD.

(C) Average distances of FAST-PETase, DepoPETase, and their variants between the hydroxyl oxygen atom (OG) of S134 and the carbonyl carbon atom (C8) of
ten MHET molecules at 30°C and 60°C, respectively, during 100 ns of MD.

(D) Linear regression between signal-to-noise ratio (SNR) and TPA released. The SNR is defined as the ratio of the average image signal value ysig to the SD of the
image signal ogg.

(E and F) Spatial distribution function (SDF) of intermediate BHET and MHET on the surface of FAST-Y61Q and Depo-S181Y at 60°C when (E) 4PET was free in the
system and (F) 4PET occupied the active site in a docking pose. Red represents the model substrate 4PET; green represents the intermediate productions
including BHET and MHET; blue represents water molecules; and yellow represents the active site (S134). The 180° rotation offered to give a complete view of
FAST-Y61Q and Depo-S181Y.

(G and H) Time course of PET depolymerization in a two-enzyme system with different PET hydrolases, including (G) PETase and (H) DepoPETase, and the
corresponding SEM images (upper panels) and water contact angle analysis (lower panels) of the PET film in the two-enzyme degradation system. Error bars
correspond to the SD of three independent MD runs (n = 3).
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This study presents an integrated ML framework, incorporating
a two-round approach (round I: GVP-GNN model; round II:
Gaussian model and learn2learn model) to comprehensively
identify beneficial variants of PETase and BHETase by
only exploring such a small library (10-40 variants). By applying
in silico scoring criteria, we successfully engineered robust vari-
ants from the FAST-PETase and DepoPETase scaffolds, namely
FAST-Y61Q and Depo-S181Y, as well as from the BHETase scaf-
fold, including BsEst-L465V and BsEst-Y109R, demonstrating
enhanced catalytic activity and functional stability across a broad
temperature range (40°C-70°C), as supported by experimental
assays and MD simulations. Importantly, the ML framework in
this study outperformed existing models such as ESM-1V,
EvMutation, and DeepSequence in identifying beneficial variants
with the highest score, particularly for BHETase. Despite its suc-
cess, our ML framework has certain limitations. For instance, it
may not perform optimally for highly complex proteins that lack
high-confidence structural data or detailed active-site informa-
tion. Additionally, the framework’s second stage (meta-learning
with Gaussian and learn2learn) currently relies solely on
sequence-based protein characterization models. Incorporating
structural information in this stage could be a promising direction
for future enhancements, potentially improving the framework’s
predictive power and applicability to a broader range of proteins.
Besides, MD simulations offered molecular insights into the be-
haviors of intermediates, confirming that the construction of a
dual-enzyme system effectively accelerates the homogeneous
production of TPA. Collectively, this innovative synergy between
the ML framework and the dual-enzyme system significantly con-
verts PET hydrolase (PETase and BHETase) scaffolds into broad-
range biocatalysts. These findings offer a proof of concept for
scalable PET hydrolase engineering and highlight the potential
of ML-assisted strategies to improve monomer yields under
industrially relevant conditions. This study demonstrates the
strength of meta-learning in enzyme engineering, enabling gener-
alization to new conditions (e.g., 60°C) with limited data. Our
framework achieved about 20% success in identifying beneficial
variants from only 10-40 candidates per round, highlighting its ef-
ficiency and practicality. Although systematic ablation analyses
were beyond the current experimental scope, future work will
further refine and expand this paradigm.

METHODS

Chemicals, reagents, and materials

Substrates and reaction products, including BHET, TPA, and
higher-purity chemicals, were purchased from Merck (Darm-
stadt, Germany) and Sigma-Aldrich (St. Louis, MO, USA),
respectively. The amorphous PET film was purchased from
Goodfellow (UK, product code: ES303010) and cut into 6-mm-
diameter pieces (roughly 67 mg) for further experiments. Genes
encoding FAST-PETase (/SPETaSGD186H/R280NN233K/R224Q/S121E,
IsPETase GenBank: BBYR01000074) and DepoPETase
(ISPETaseTSSI/D186H/D220N/N233K/N246D/R260Y/3290P) were commer-
cially synthesized by Tsingke Biotechnology (Nanjing, China)
with codon optimization for expression in Escherichia coli
BL21 cells. BsEst was identified in our previous study and stored
in our lab.*®
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Site-directed mutagenesis

Variants of FAST-PETase, DepoPETase, and BsEst were con-
structed by PCR plasmid amplification. PCR products were
incubated with Dpnl (New England Biolabs, Ipswich, MA, USA)
to digest the original DNA template, then separately transformed
into E. coli DH5a (heat shock at 42°C for 45 s), followed by ex-
pressing in E. coli BL21(DES3). Finally, the introduced mutations
were confirmed by sequencing (Tsingke Biotechnology).

Enzyme expression and purification

The recombinant bacteria were inoculated into Luria-Bertani (LB)
liquid medium (100 pg/mL ampicillin) and grown overnight at
37°C/200 rpm for 14 h. The 2% cell cultures were transferred
into 100 mL of LB liquid medium (100 pg/mL ampicillin) and
shaken at 37°C/200 rpm for 3 h. When the optical density at
600 nm (ODggp) reached 0.6-0.8, isopropyl-1-thio-p-D-galacto-
pyranoside (IPTG) was added to final concentrations of
0.1 mM and grown overnight at 20°C/200 rpm for 24 h. Subse-
quently, supernatants were collected by centrifugation
(8,000 x g for 10 min at 4°C) and resuspended in 50 mM Tris-
HCI buffer (pH 7.5) after washing twice with buffer (pH 7.5).
The washed cells with 1 mg/mL lysozyme were disrupted by son-
ication (3-s pulse on, 5-s pulse off, amplitude 35%). Cell debris
was removed by centrifugation (8,000 x g at 4°C for 1 h), and
the supernatants were filtrated by a 0.22-pm filter (Choice filter,
Thermo Scientific). To obtain the purified enzymes, the samples
were then applied to a 5-mL HisTrap HP column (GE Healthcare).
After washing unbound proteins (20 mM imidazole), the target
protein was collected by 250 mM imidazole. The concentration
of protein was determined using a protein assay kit (BCA Protein
Assay Kit; Genstar, Beijing, China) with BSA as the standard, and
the purity of each protein was checked by SDS-PAGE analysis.

PET depolymerization assay to screen variants using gf-
PET films

To evaluate the variants’ activities, the amorphous gf-PET film
(Goodfellow, 1 mm thickness, 6 mm diameter, roughly 67 mg)
was soaked in 1,980 mL of 50 mM Tris-HCI buffer (pH 8.5) with
20 pL of purified enzymes at different temperatures (40°C-
70°C) for 24 h. The reactions were terminated by heat treatment
(100°C, 10 min). The supernatant obtained by centrifugation
(8,000 x g, 5 min) was then analyzed by Agilent 1200 and Ulti-
mate 3000 UHPLC systems equipped with a Welch Ultimate
XBC18 column (4.6 x 250 mm, 5 um, Welch Materials, Shanghai,
China) to quantify PET monomers released from PET depolymer-
ization. The mobile phase was 40% methanol with 0.12% acetic
acid (pH 2.5) at a flow rate of 0.7 mL min~", and the effluent was
monitored at a wavelength of 240 nm.

Variant screening for effective hydrolysis of BHET into
TPA

When using BHET as the reaction substrate, appropriate
amounts of crude wild-type BsEst and each colony of the variant
were incubated with 5 mM BHET in a buffer containing 50 mM
Tris-HCI (pH 7.5) at different temperatures (30°C-60°C), and
samples were taken regularly. The supernatant was obtained
by centrifugation (8,000 x g, 5 min) and analyzed by HPLC.
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Depolymerization of untreated post-consumed PET
products by a two-enzyme system

PET films for the experiment were obtained from commercial
suppliers and cut into 6-mm-diameter pieces (12-23 mg). The
commercial post-consumed PET (pc-PET) was treated by a
two-enzyme system, combining FAST-PETase/DepoPETase
variants with BsEst in 1,960 pL of 50 mM Tris-HCI (pH 8.5). The
reaction mixture was incubated at 60°C, and the fresh enzyme
solution was supplemented every 24 h for depolymerization.
The reactions were then terminated by heat treatment
(100°C, 10 min). The supernatant obtained by centrifugation
(8,000 x g, 5 min) was then analyzed by HPLC.

SEM
The morphology of PET films before and after enzyme exposure
was examined following a previously reported procedure.®

Water contact angle

The water contact angle of PET films before and after enzyme
exposure was examined following a previously reported
procedure.*

Cold-start variant selection

Screening the optimal pose and candidate substitutions
The SMILES format file of substrate 2-HE(MHET)_4 and protein
embedding from the ESM2 model (esm2_t36_3B_UR50D)"" are
used as input to perform molecular docking via DiffDock. The
parameters are as follows: inference_steps = 20, samples_
per_complex = 40, batch_size = 10, actual_steps = 18 and no_
final_step_noise. Based on confidence score, the top-1 predic-
tion ligand pose is selected as the optimal binding structure.

To identify potential sites for mutation, considering the spatial
relationship between the ligand and the enzyme, a specific dis-
tance is established for the unknown active site, such as the
Euclidean distance of 10 A. The range of amino acids from the
substrate molecule or the top 50 or top 70 amino acids closest
to the active site of the enzyme, based on C, distance, are
then selected as candidate sites for mutation, excluding the
active sites. Subsequently, the selection of candidate sites and
the type of amino acid will be determined through a GNN.
GVP-based GNN
We employed GVP-GNN,*® leveraging the advantages of GNNs
and CNNs. GVP-GNN replaces dense layers with GVPs within a
GNN, predicting the distribution of amino acid types on the
protein sequence based on the residue’s chemical and topolog-
ical environment by exchanging information with neighboring
residues.

In the GVP-GNN framework, a protein structure is represented
as a proximity graph with vertices and edges extracted from 3D
backbone atoms. Both vertices and edges contain scalar and
vector features. In detail, each vertex that expresses a residue’s
attributes has embedding with the following features.

(1) Scalar features{sin,cos}«{¢,y,w}, Where ¢, v, and w are
the dihedral angles computed from C;_1, N;, Cy,, Cj,
and N;, 1.

(2) The forward and reverse unit vectors in directions of
Cy., — Cy and Gy, , — C,,, respectively.
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(3) The unit vector in the imputed direction of Cs, — Cy.
(4) A one-hot representation of amino acid identity.

Each edge that expresses the relationship between two resi-
dues has embedding with the following features.

(1) The unit vector in the direction of C,, — C,.

(2) The encoding of the distance ||C_(a_j)—C_(a_i)||2 in terms
of Gaussian radial basis functions.

(3) A sinusoidal encoding of j — i, which represents distance
along the backbone.

Additionally, we introduce the isoelectric point (pl) as a vital
amino acid attribute. All features are concatenated and passed
to a GVP layer to obtain an initial input graph. Subsequently,
GVP-GNN utilizes message passing to update each vertex’s em-
beddings based on messages from neighboring vertices and
edges. The output graph, derived from message-passing layers,
provides a refined vertex representation, which is further pro-
cessed through a GVP layer and a SoftMax layer for multi-class
classification, resulting in the probability distribution of the 20
standard amino acids across all positions.

To further balance model generalization and biological inter-
pretability, we restricted our training and evaluation to well-
curated enzyme domains. Specifically, we adopted the prepro-
cessed CATH 4.2 dataset released by Townshend et al.*° This
dataset has been widely used for benchmarking structure-aware
learning models, enabling direct comparison with prior studies.

For each enzyme, residues were mapped to their correspond-
ing 3D coordinates, and the catalytic center was defined based
on known active-site annotations or bound ligand positions
when available. Residues within a defined spatial radius
(typically 8-12 A) from the active-site centroid were retained as
the mutationally tractable region. This heuristic reduces compu-
tational complexity while prioritizing positions most likely to
modulate catalytic efficiency or substrate recognition. To ensure
robustness, residues in flexible loops adjacent to the active site
were also considered when sufficient structural confidence
scores were available. We acknowledge that our approach
does not capture all potential long-range effects, and the rela-
tively modest improvement observed for the BsEst scaffold
may partly reflect scaffold-specific constraints and dataset bias.

We retrained the GVP-GNN with the CATH data, following the
structural split methodology in previous work: learning rate =
0.001, betas = (0.9, 0.999); training 40 epochs, save best model.
The training dataset for our GVP-GNN model was derived from
CATH v.4.2, the widely used structural classification database
for protein domains. To ensure consistency with previous
work, we followed the same dataset preparation and train-test
splitting strategy used in the original GVP paper, including
sequence identity thresholds and structural redundancy filtering
to reduce overfitting.

During model training, we used the Adam optimizer with a
mini-batch size of 3,000 amino acid residues. The model was
trained to minimize the cross-entropy loss over the 20 standard
amino acid classes at each residue position. We explored the hy-
perparameter space through 50 independent trials with the
following settings. Learning rate: log-sampled between 1e—5
and 5e—4; dropout rate: uniformly sampled between 0.05 and
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0.5; epochs: 40 maximum, with early stopping if validation loss
plateaued (<1% improvement across 5 epochs). The optimal
configuration was identified as: learning rate: 0.001; dropout
rate: 0.1; #; and f,: default Adam values.

This setup achieved optimal generalization on a held-out vali-
dation subset of the CATH 4.2 dataset.

According to the GVP results, there could be a potential variant
when the difference between the original type of amino acid and
the predicted type with the highest probability of amino acid takes
place in one site. Because of the impossibility of validating all
variants, the variants that are around the active site or ligand
can be selected as experimental candidates. FAST-PETase and
DepoPETase share identical active sites (S134/D180/H211).
Despite having the same top-50 distance closed candidates,
they exhibit distinct GVP results. Consequently, for both enzymes,
we selected the ten closest substitutions to the active site for
experimentation. In the case of BsEst, which features top 70 sub-
stitutions closest to the active site (S189/E310/H399), we chose
the 20 substitutions nearest to the active site based on GVP
results. We note that the distance-to-active-site threshold was
chosen as a pragmatic heuristic to focus mutational exploration
on residues most likely to impact activity. While this choice inevi-
tably constrains the search space and does not guarantee a linear
relationship with functional changes, it provided a cost-effective
strategy under experimental capacity limits.

Fine-tuning the ESM2 model with homologous protein
data

Based on the known PETase and BHETase, the hhblits tool helps
grab 28,397 sequences with parameters n = 3, B = 100,000, and
cpu = 16. According to the principle of Devlin et al.,*® we fine-
tune the ESM2 model as follows.

(1) 10% of the amino acids are masked.

(2) In 80% of the cases, the masked amino acids are re-
placed by <mask>.

(3) In 10% of the cases, the masked amino acids are re-
placed by a random amino acid (different) from the one
they replace.

(4)In the remaining 10% of cases, the masked amino acids

are left as is. Maximum steps = 5,000, learning rate is 1e—4,

optimization is a factor 8 V100, 5 days.

Following the fine-tuning of the ESM2 model, we employ it for
the design of BHETase (BsEst). Once the embedding of BsEst is
obtained, we utilize both the learn2learn model and the Gaussian
process regression (GPR) model to predict variants for the next
round.

learn2learn model
In this study, we employed the MAML algorithm®” to discern uni-
versal catalytic activity knowledge across various temperature
conditions and then transfer this knowledge for robust predic-
tions under new conditions. During the initial experimental round,
catalytic activity measurements were obtained at multiple tem-
peratures, and the data were subsequently partitioned into sup-
port data and query data.

Recognizing the challenge of identifying substitutions with sig-
nificant catalytic efficiency based on limited samples, our focus
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shifted toward achieving enhanced performance using machine-
learning techniques, specifically those falling under the umbrella
of “learning to rank.” This approach encompasses listwise
methods, where a ranking function is learned by treating individ-
ual lists as instances and minimizing a loss function defined on
the predicted list against the ground-truth list. One such listwise
method employed in our study is ListMLE, which formalizes
learning to rank as a problem of minimizing the likelihood loss
function. This method has demonstrated superior properties
and yielded improved experimental results on benchmark data-
sets. The loss function is defined as follows:

L({y}.{s}) = — log(P(ms)).

where P(z,|s) is the Plackett-Luce probability of a permutation z,
conditioned on scores s. Here, 7, represents a permutation of
items ordered by the relevance labels y where ties are broken
randomly. In the MAML network, we used three multi-layer
perceptrons.

GPR model
The GPRs"? are defined over our parameter space, the set of all
combinations of embedding that obtained from fine-tuned ESM2
model, as linear combinations of kernel functions. The kernel
functions depend on hyperparameters, most often correlation
length scales and signal variances. The GPR model can be
trained and conditioned on the experimental data, resulting in
an acquisition function that can be passed to an optimizer to
find the optimal next measurement outcome.

Defining a GPR model from data D = {(x1,y1),...,(Xn:¥n)}, Where
x; € R, n =1,280, and y; = f(x) + €(x), is accomplished in a
Bayesian framework by placing a Gaussian probability density
function:

p(f) = exp[— S WK )

(2x)"|K|

called the prior, over a function space, and condition it on the
data. p = [u(X1), ..., u(xn)]" is the mean of the prior Gaussian
probability density function, f = [f(x4), ..., F(xn)]T; Kj = k(gh,xiX)
is the covariance function or kernel, where ¢is a set of hyper-
parameters, commonly length scales / and signal variance og
For this study, we used a combination kernel of Dot-product
and White. The Dot-product kernel is given by

k(xi,x) = o5 + x;-x;,where o = 1.0.

s

With ag = 1, the kernel function exhibits a bias term at
the origin, making it a nonhomogeneous linear kernel. The
nonhomogeneous linear kernel can handle linear relationships
beyond those passing through the origin, adding flexibility to
the model.

The White kernel is given by

oy _ J1.0ifx = x;,
k(X”X/) B { O,ifX,‘%X,‘.
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Meta-learning framework and model architecture

In the meta-learning phase (round Il), we implemented a model-
agnostic framework using the learn2learn library to enable rapid
adaptation from limited training data.*® Each training episode con-
sisted of randomly sampled enzyme-specific tasks that were spilit
into support and query subsets (typically at a 3:1 ratio). Meta-
batches were constructed by combining multiple episodes to
ensure balanced gradient updates and mitigate task-level bias.

The underlying base model was a two-layer fully connected
neural network that mapped 1,280-dimensional ESM2 embed-
dings to a scalar stability score. The model was optimized using
the ListMLE loss function, which directly optimizes ranking con-
sistency between predicted and experimentally observed stabil-
ity, thereby emphasizing the identification of beneficial variants
rather than minimizing mean-square error as in conventional
regression. Model parameters were updated using meta-gradi-
ents derived across tasks through stochastic gradient descent
with an adaptive learning rate (1e—4).

To improve generalization, the feature encoder weights from
ESM2 were frozen during meta-training, while task-specific
adaptation occurred through the final regression layers. Each
meta-epoch comprised 50-100 episodes, and convergence
was typically achieved after 30-40 epochs. The Gaussian pro-
cess baseline was trained independently on the same embed-
ding features using a Dot-product + White kernel for computa-
tional efficiency in high-dimensional space (n = 1,280).

Collectively, this framework differs from conventional regres-
sion pipelines by enabling task-level learning dynamics—that is,
the model learns to rank variants effectively across heterogeneous
sequence-function relationships and to generalize from sparse
supervision. The design allows the identification of promising var-
iants even in low-data regimes where standard regression or
evolutionary models such as EvMutation may underperform.

Quantitative assessment of the efficiency of two-
enzyme systems by imaging technique
Imaging techniques were employed to establish a quantitative
assessment of the efficiency of the two-enzyme system.
Taking the example of a two-enzyme system coupled with
DepoPETase, we initially obtained SEM images of PET film pro-
cessed through the system for 48 h. These included the controlim-
age (PET film), the DepoPETase (single-enzyme system) catalyzed
image, the DepoPETase/BsEst (two-enzyme system) catalyzed
image, and the Depo-S181Y/BsEst-Y109R (two-enzyme system)
catalyzed image (Figures 5G and 5H). After removal of watermarks,
we calculated the difference between the experimental images
and control images, respectively. In the control group, the SEM
image has a smooth surface with minimal brighter pixel dots.
As the PET film underwent erosion by single-/two-enzyme sys-
tems, the PET film surface became rougher, evident in the images
by the emergence of bright pixels. The intensity of the pixel bright-
ness correlated with the roughness of the membrane surface and
the catalytic capacity under identical reaction conditions.
Subsequently, the SNR was calculated using the formula

SNR = Hs.
Osig
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which is defined as the ratio of the average image signal
value ugig to the standard deviation of the image signal os;g.
A higher SNR value indicates superior image quality, reflect-
ing a higher mean value of the image signal, more bright
spots, and a rougher surface of the PET film. Simultaneously,
a smaller variance in the image signal signifies less fluctuation
in signal data, indicating greater consistency in image signal
values.

Molecular docking and MD simulation

Given that the crystal structure of PETase is known (PDB:
B6EQE), we used it as a reliable template for predicting the struc-
tures of the FAST-PETase and DepoPETase variants with
AlphaFold 2, which resulted in high prediction accuracy.®
Representative structure was then used for further molecular
docking. A previously reported model substrate including
4PET and BHET was used.***> Molecular docking was per-
formed using AutoDock Tools 1.5.6.°° The predicted catalytic
residues were used to define the binding pocket, and clustering
analysis of the output results was conducted by AutoDock us-
ing criteria such as energy minimization and cluster size. The
energetically favorable poses of ligands binding to the targeted
sites of enzymes were extracted and analyzed. After yielding
the final docked binding mode, MD simulation and analysis
were performed with the GROMACS 2016 simulation package
with the GROMOS96 (54a7) force field. Docking conformations
and topology files of substrates 4PET, BHET, and intermediates
BHET, MHET, EG, and TPA were obtained from the ATB web-
site (http://atb.uqg.edu.au/index.py). The docking conformation
and topology files of FAST-PETase, FAST-Y61Q-PETase,
DepoPETase, and Depo-S181Y-PETase maintained the
docked conformation with 4PET in the simulated system, and
the intermediates BHET, MHET, EG, and TPA molecules were
randomly inserted into the system. BsEst, Bs-Y109R, and Bs-
L465V maintained the docked conformation with BHET in the
simulated system. A total of 42 simulated reactions at 303 K
and 333 K after docking with substrates were performed in
the system for the two types of proteins PETase and BsEst,
respectively. The proteins, substrates, and intermediates
were first placed in a cubic box with a minimum distance of
12 A from the edge of the box to the proteins, and the box
was next filled with water molecular model simple point charge
extended (SPCE). To equilibrate the system, Na* and CI~ were
added for net charge neutralization. To avoid unfavorable inter-
actions, energy minimization was performed using the steepest
descent method prior to MD simulations, followed by 100 ps
canonical ensemble treatments (NVT) at 303 K and 333 K,
then 100 ps constant-pressure, constant-temperature treat-
ments (NPT), and finally running the simulations (100 ns at
303 K/333 K, 1 bar, and 2 fs time step). To avoid experimental
chance introduced by a single simulation, we used three
simulations with different starting atomic velocities as parallel
controls. During the simulations, the energy, coordinates, and
velocity were recorded at 0.5 ns intervals, and the trajectories
were visualized and analyzed with PyMOL 2.5.2 and
VMD 1.9.3; all analyses were finally calculated using the
GROMACS simulation packaging tool.
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